
Enterprise Ethereum Alliance

Off-Chain Trusted Compute

Specification v1.0

Editors:

Sanjay Bakshi (Intel)
Yevgeniy (Eugene) Yarmosh (Intel)
Lei Zhang (iExec Blockchain Tech)

Contributors:

Thomas Bertani (Oraclize), Mic Bowman (Intel), Jean-Charles Cabelguen (iExec), Andreas
Freund (ConsenSys), Bill Gleim (ConsenSys), Marley Gray (Microsoft), Puneetha Karamsetty
(Web3Labs), Junji Katto (Itau), Dan von Kohorn (ConsenSys / Independent), Sergey Nazarov
(Chainlink), Chaals Nevile (EEA), George Polzer (Everymans AI), Przemyslaw Jakub
Siemion (Santander Digital), Michael Steiner (Intel), Ben Towne (SAE ITC), Bruno Vavala
(Intel), Tom Willis (Intel)

This document specifies APIs that enable off-chain Trusted Computing for Enterprise Ethereum. In
this release, The Trusted Computing specification enables privacy in blockchain translations,
moving intensive processing from a main blockchain to improve scalability and latency, and
support of attested Oracles.

The copyright in this document is owned by Enterprise Ethereum Alliance. Inc. (“EEA” or
“Enterprise Ethereum Alliance”).

No modifications, edits or changes to the information in this document are permitted. Subject to the
terms and conditions described herein, this document may be duplicated for internal use, provided
that all copies contain all proprietary notices and disclaimers included herein. Except as otherwise
provided herein, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights are granted herein.

13 May 2019

Abstract

1. Legal Notice

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 1 of 66

Use of this document and any related intellectual property incorporated herein, is also governed by
the Bylaws, Intellectual Property Rights Policy and other governing documents and policies of
EEA and is subject to the disclaimers and limitations described below.

No use or display of any of the following names or marks "Enterprise Ethereum Alliance", the
acronym "EEA", the EEA logo, or any combination thereof, to claim compliance with or
conformance to this document (or similar statements) is permitted absent EEA membership and
express written permission from the EEA. The EEA is in process of developing a compliance
testing and certification program only for the EEA members in good standing, which it expects to
launch in second half of 2020.

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY
QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF
ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION
OR SAMPLE. EEA DOES NOT WARRANT THAT THIS DOCUMENT IS COMPLETE OR
WITHOUT ERROR AND DISCLAIMS ANY WARRANTIES TO THE CONTRARY.

Each user of this document hereby acknowledges that sofftware or products implementing the
technology specified in this document ("EEA-Compliant Products") may be subject to various
regulatory controls under the laws and regulations of various governments worldwide. Such laws
and regulatory controls may govern, among other things, the combination, operation, use,
implementation and distribution of EEA-Compliant Products. Examples of such laws and
regulatory controls include, but are not limited to, airline regulatory controls, telecommunications
regulations, finance industry and security regulations, technology transfer controls, health and
safety and other types of regulations. Each user of this document is solely responsible for the
compliance by their EEA-Compliant Products with any such laws and regulations and for obtaining
any and all required authorizations, permits, or licenses for their EEA-Compliant Products related
to such regulations within the applicable jurisdictions. Each user of this document acknowledges
that nothing in this document or the relevant specification provides any information or assistance in
connection with securing such compliance, authorizations or licenses. NOTHING IN THIS
DOCUMENT CREATES ANY WARRANTIES WHATSOEVER REGARDING THE
APPLICABILITY OR NON-APPLICABILITY OF ANY SUCH LAWS OR REGULATIONS OR
THE SUITABILITY OR NON-SUITABILITY OF ANY SUCH PRODUCT OR SERVICE FOR
USE IN ANY JURISDICTION.

EEA has not investigated or made an independent determination regarding title or non-
infringement of any technologies that may be incorporated, described or referenced in this
document. Use of this document or implementation of any technologies described or referenced
herein may therefore infringe undisclosed third-party patent rights or other intellectual property
rights. The user is solely responsible for making all assessments relating to title and non-
infringement of any technology, standard, or specification referenced in this document and for

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 2 of 66

1.

2.

2.1

obtaining appropriate authorization to use such technologies, standards, and specifications,
including through the payment of any required license fees.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR
NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR
SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT.

IN NO EVENT SHALL EEA OR ANY OF ITS MEMBERS BE LIABLE TO THE USER OR TO
A THIRD PARTY FOR ANY CLAIM ARISING FROM OR RELATING TO THE USE OF THIS
DOCUMENT, INCLUDING, WITHOUT LIMITATION, A CLAIM THAT SUCH USE
INFRINGES A THIRD PARTY’S INTELLECTUAL PROPERTY RIGHTS OR THAT IT FAILS
TO COMPLY WITH APPLICABLE LAWS OR REGULATIONS. BY USE OF THIS
DOCUMENT, THE USER WAIVES ANY SUCH CLAIM AGAINST EEA AND ITS MEMBERS
RELATING TO THE USE OF THIS DOCUMENT.

EEA reserves the right to adopt any changes or alterations to this document as it deems necessary
or appropriate without any notice. User is solely responsible for determining whether this
document has been superseded by a later version or a different document.

This section describes the status of this document at the time of its publication. Newer documents
might supersede this document.

This document has been reviewed by the EEA Membership, Executive and Board, and is endorsed
by the EEA Board for publication as an experimental API. It is a stable document and may be used
as reference material or cited from another document.

This specification was developed by the EEA Technical Specification Working Group, Trusted
Computing Task Force for review, improvement, and publication as an EEA Standard.

Please send any comments to the EEA Technical Steering Committee at
https://entethalliance.org/contact/.

GitHub Issues are preferred for discussion of this specification.

Legal Notice

Introduction

Background

Status of This Document

Table of Contents

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 3 of 66

2.1.1
2.1.1.1

2.1.1.2

3.

4.

5.

5.1
5.1.1
5.2

6.

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8

7.

7.1
7.1.1
7.1.2

Invocation Models
Direct Model

Proxy Model

Conformance

Design Assumptions

RPC Encoding Conventions

Error and Status Formats
Parameters

JWT Signature Support

Worker APIs

Worker Registry List Smart Contract API
Adding a New Registry
Updating a Registry
Setting Registry Status
Initiating Registry Lookup
Getting Additional Registry Lookup Results
Retrieving Registry Information

Worker Registry Smart Contract API
Registering a New Worker
Updating a Worker
Setting Worker Status
Initiating Worker lookup
Getting Additional Worker Lookup Results
Retrieving Worker Information

Off-Chain Worker Registry JSON RPC API
Worker Register JSON Payload
Worker Update JSON Payload
Worker Set Status JSON Payload
Worker Lookup JSON Payload
Worker Lookup Next JSON Payload
Worker Lookup Response JSON Payload
Worker Retrieve JSON Payload
Worker Retrieve Response JSON Payload

Work Orders

Direct Model Invocation
Work Order Request Payload
Work Order Result Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 4 of 66

7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.8.1

7.1.8.2

7.1.8.3

7.1.8.4

7.1.9
7.1.10
7.1.11
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10

8.

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

Work Order Status Payload
Work Order Pull Request Payload
Work Order Asynchronous Result
Work Order Completion Event
Work Order Data Formats
Work Order Signing

Request Hash Calculation and Encryption

Response Hash Calculation

Signing for JSON-RPC Format

Signing for JSON-RPC-JWT Format

Get Encryption Key Request Payload
Get Encryption Key Response Payload
Set Encryption Key Request Payload

Proxy Model Invocation
Submitting a New Work Order
New Work Order Event
Completing a Work Order
Work Order Done Event
Retrieving Work Order Response Information
Setting Encryption Key
Encryption Key Set Event
Retrieving Encryption Key
Starting Encryption Key Generation
Encryption Key Start Event

Work Order Receipts

Proxy Model Receipt Handling
Creating a Work Order Receipt
Updating a Work Order Receipt
Retrieving a Work Order Receipt
Retrieving a Work Order Receipt Update
Work Order Receipt Lookup
Work Order Receipt Lookup Next
Work Order Receipt Update Event
Work Order Receipt Create Event

Direct Model Receipt Handling
Status and Error Payload Structure
Receipt Create Request Payload
Receipt Update Request Payload
Receipt Retrieve Request Payload
Receipt Retrieve Response Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 5 of 66

8.2.6
8.2.7
8.2.8
8.2.9
8.2.10

9.

9.1
9.2
9.2.1
9.2.2
9.3
9.4

10.

10.1
10.2
10.3
10.4

A.

A.1

B.

B.1
B.2

Receipt Update Retrieve Request Payload
Receipt Update Retrieve Response Payload
Receipt Lookup Request Payload
Receipt Lookup Response Payload
Receipt Lookup Next Request Payload

Appendix A: Worker Specific Detailed Data

Common Data for All Worker Types
TEE Worker Data

Intel SGX Worker Type Data
TEE-SGX Load Balancing and Enclave pools

MPC Worker Data
ZK Worker Data

Implementation Notes

Note 1: Receipts
Note 2: Worker Service
Note 3: Proof Data
Note 4: Security Consideration

Additional Information

Terminology

References

Normative references
Informative references

This section is non-normative.

This specification has four objectives:

Support private transactions on a blockchain between mutually-untrusting parties without
disclosing transaction details to other parties who also have access to the blockchain.

Support disclosure of selected information to chosen parties on a blockchain, while
maintaining the secrecy of other information from those same chosen parties ("selective
Privacy").

Move intensive processing from a main blockchain to an off-chain Trusted Compute
capability thereby improving throughput and scalability.

Support Attested Oracles.

2. Introduction

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 6 of 66

These objectives are achieved by executing some parts of a blockchain transaction off the main
chain in off-chain trusted computing. There are currently three types of Trusted Compute that are
supported by this specification:

Trusted Execution Environments (Hardware based)

Zero-Knowledge Proofs (Software based)

Trusted Multi-Party-Compute (MPC) (Software/Hardware based)

The APIs are grouped in registration, invocation and receipt handing sections. Attested Oracles are
considered a special application of Trusted Compute used to create increased trust in an Oracle,
and can be implemented using the defined APIs.

Early blockchains delivered computational trust via massive replication but had limited throughput,
and imperfect privacy and security. Adding trusted off-chain execution to a blockchain improves
blockchain performance in these areas. In this specification, a main blockchain maintains a single
authoritative instance of the objects, enforces execution policies, and ensures that transactions and
results can be audited, while associated off-chain trusted computing allows greater throughput,
increases Work Order integrity, and protects data confidentiality.

For terminology used in this specification please refer to the terminology section.

Figure 1 depicts an example Enterprise Ethereum blockchain with N member enterprises. Each
enterprise has Requesters, an Ethereum blockchain client and one or more Workers (supported by a
Worker Service). Requesters submit Work Orders, and Workers execute those Work Orders. Work
Order receipts can be recorded on the blockchain by Ethereum clients running Smart Contracts.
While each of the enterprises in figure 1 contains all three major components, this is not necessary.
For example, Requesters from Enterprise 1 may send Work Orders to a Worker at Enterprise 2, and
the results may be recorded by an Ethereum Client at Enterprise 1. Accessing resources across
multiple enterprises increases network resilience, allows more efficient use of resources, and
provides access to greater total capacity than most individual enterprises can afford.

2.1 Background

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 7 of 66

Figure 1 Figure 1 Enterprise Ethereum Blockchain with Off-Chain Workers

In order to get these benefits of cooperation, participating Enterprises must register their
Requesters, Ethereum Clients, and Workers with the main blockchain. Each registered Requester,
Ethereum Client, or Worker (or its Worker Service) will have its own unique Ethereum address (or
a DID that can be resolved to an Ethereum address) from which to receive or send transactions.

A Requester can submit a Work Order to a Worker via one of the following models:

In this invocation, model Workers are invoked via a JSON RPC network API. An organization
registers its Workers with on-chain Smart Contract(s) where a ÐApp can discover them.
Subsequent interactions between a ÐApp and the Worker are done off the chain. Optionally,
transaction receipts can be stored on the chain.

2.1.1 Invocation Models

2.1.1.1 Direct Model

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 8 of 66

Figure 2 Figure 2 Direct Invocation

In this invocation, model Workers are invoked via a proxy Smart Contract (see section Proxy
Model Invocation). The Proxy Model is typically used to support uses in which an application
Smart Contract or a ÐApp prefers not to or cannot invoke a Worker directly. An organization
registers its Workers with an on-chain Smart Contract where a ÐApp or other smart contract can
discover them. Optionally, transaction receipts can be stored on the chain.

2.1.1.2 Proxy Model

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 9 of 66

Figure 3 Figure 3 Proxy Invocation

This version of the specification addresses only stateless (from the Worker viewpoint) execution.
Maintaining state between Work Order invocations has to be managed by the caller.

A future version of the specification may include an additional model, in which off-chain logic acts
as both the Requester and the Worker and is the creator and controller of the Smart Contract. The
Smart Contract is branded by its creator and maintains the state of the contract. Logic within the
Smart Contract is minimally used for validating and enforcing security policies for state changes
and local transactions. This version would rely on an external registry shared by contract
participants.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key word MUST is to be interpreted as described in [RFC2119].

This Specification extends the capabilities and interfaces of the Enterprise Ethereum Alliance
Client Specification, version 2.

The Application Programming Interfaces (APIs), JSON-RPC formats and parameters, "Smart
Contract" functions and events described in this Specification are experimental. Experimental
means that a requirement or API may change as implementation feedback is incorporated.
Implementors are encouraged to implement these experimental requirements, with the knowledge

3. Conformance

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 10 of 66

that requirements in future versions of the Specification are not guaranteed to be compatible with
the current version. Please send your comments and feedback on the experimental portions of this
Specification to the EEA Technical Steering Committee at https://entethalliance.org/contact/.

This section is non-normative.

The APIs in this specification assume the existence of :

A Worker Registry smart contract or an Off-Chain Worker Registry JSON RPC API for
registering various Workers as a part of a deployment.

An optional Work Order Receipts smart contract and/or support for Work Order Receipts
JSON RPC API for Requesters to create Work Order receipts and for Workers to update Work
Order receipts upon completion of execution.

RPC APIs in the current version of the specification use [JSON-RPC-API]. Future versions of the
specification may support other mechanisms such as protobuf and gRPC.

For the Proxy Model, the APIs additionally assume the existence of a Work Order Invocation
Proxy smart contract (deployed by a Worker Service) for sending work orders as defined in section
Proxy Model Invocation. It is used by a ÐApp or an enterprise application smart contract to invoke
Work Order execution in a Worker.

For the Direct Model, Workers support the Work Order Execution JSON RPC API to receive Work
Orders from ÐApps.

The APIs assume that a Worker:

Has an RSA [RFC8017] and potentially an ECDSA/SECP256K1 [secp256k1] public-private
key pair, that can be used to encrypt data (e.g. a one-time symmetric session key) and to create
digital signatures.

Can publish its public keys.

Never reveals its private keys.

Provides proof data that defines and attests what mechanisms and capabilities are used to
ensure Worker execution integrity, Requester’s privacy, and data confidentiality.

This specification assumes, but doesn’t define, a permissioning mechanism that would authorize
access to defined APIs. It assumes that implementation-specific policies will be implemented and
enforced by the Worker Registry smart contract, optional Requester Registry smart contract,
optional Work Order Invocation Proxy smart, and/or optional Work Order Receipts smart contract.

4. Design Assumptions

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 11 of 66

The Delegate Model assumes a shared registry of workers and assumes that the associated
repository for the registered packaging, binary (.jar, .dll, etc.), Docker image, or other is available
to parties participating in the contracts using them.

All RPC APIs in this specification follow JSON RPC conventions:
https://www.jsonrpc.org/specification.

JSON RPC payloads include the following common features applicable to all APIs:

jsonrpc MUST be 2.0 as defined in [JSON-RPC-API]

id is an id used to link request and response as described in [JSON-RPC-API]

All errors and status are returned in the following generic JSON RPC error format.

{
 "jsonrpc": "2.0", // as per JSON RPC spec
 "id": <integer>, // the same as in input
 "error": { // as per JSON RPC spec
 "code": <integer>,
 "message": <string>,
 "data": <implementation specific data>
 }
}

jsonrpc must be 2.0 per JSON RPC specification

id is the same id that was sent in a corresponding request

error is a JSON object that defines an error or error status, with the following parameters:

code is an integer number defining an error or state. Supported values:

Values from -32768 to -32000 are reserved for pre-defined errors in JSON RPC spec

0 – success

1 – unknown error

5. RPC Encoding Conventions

5.1 Error and Status Formats

5.1.1 Parameters

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 12 of 66

2 – invalid parameter format or value

3 – access denied

4 – invalid signature

5 - no more look up results

6 - unsupported mode (e.g. synchronous, asynchronous, pull, or notification)

message is a string describing the errors and corresponding to code value.

data contains additional details about the error. Its format is error and implementation specific.

The APIs also support JSON Web Token [RFC7519] as an option for the signatures.

Header:

{
 "alg": "RSA" or "secp256k1"
 "type": "JWT"
}

Payload:

{
 "apiSpecific": <string>
 //...
}

Signature:

RSA or SECP256K1(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 secret)

Where secret is a random nonce.

The parameter descriptions for APIs in this specification only specify API-dependent Payload
objects.

5.2 JWT Signature Support

6. Worker APIs

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 13 of 66

This chapter defines APIs for registering Workers, Worker Registries and Worker Registry Lists:

Smart contract API to list worker registries, defined in Worker Registry List Smart Contract
API.

Smart contract API for maintaining worker registry on-chain, defined in Worker Registry
Smart Contract API.

JSON RPC API for maintaining worker registry off-chain, defined in Off-Chain Worker
Registry JSON RPC API.

APIs in this section are implemented as an Ethereum smart contract referred to as Worker Registry
List.

An implementation-specific model will be used to enforce authorization policies for access to these
APIs.

As mentioned in Registering a New Worker section, currently three workers types are defined
based on trusted compute type attributes. In future, more attributes such as location, support for
some special hardware or software feature, etc. will be defined. The Worker Registry Smart
Contract allows attribute-based grouping of workers or grouping based on an organization e.g.
those belonging to a single bank. The Worker Registry List Smart Contract API allows discovery
of various worker registries.

This function updates a registry to the registry list.

Inputs and outputs are the same as for the function registryAdd() above.

This function sets a Registry's status.

Inputs

orgID identifies organization that hosts the registry, the same that is used in function
registryAdd().

function registryUpdate(byte32 orgID, string uri, byte32 scAddr, bytes32[

6.1 Worker Registry List Smart Contract API

6.1.1 Adding a New Registry

6.1.3 Setting Registry Status

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 14 of 66

status defines registry status to set. The currently defined values are:

1. indicates that the registry is active

2. indicates that the registry is "off-line" (temporarily)

3. indicates that the registry is decommissioned

function registrySetStatus(byte32 orgID, uint8 status) public

This function retrieves a list of registry ids that match the input parameters.

The Worker must match all input parameters (AND mode) to be included in the list.

If the list is too big to fit into a single response (the maximum number of entries in a single
response is implementation-specific), the smart contract should return the first batch of the results
and provide a lookupTag that can be used by the caller to retrieve the next batch by calling
registryLookUpNext.

All input parameters are optional and can be provided in any combination to select a registry.

Inputs

appTypeId is an application type that must be supported by the workers.

Outputs

totalCount is the total number of entries matching a specified lookup criteria. If this number is
larger than the size of the ids array, the caller should use the lookupTag to call
workerLookUpNext to retrieve the rest of the ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
registry ids that can be retrieved by calling the function registryLookUpNext with this tag as an
input parameter.

ids is an array of the registry organization ids that match the input parameters

function registryLookUp(bytes32 appTypeId) public view returns
 (int totalCount,
 string LookupTag,
 bytes32[] ids)

6.1.4 Initiating Registry Lookup

6.1.5 Getting Additional Registry Lookup Results

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 15 of 66

This function is called to retrieve additional results of the Registry lookup initiated by the
registryLookUp call.

Inputs

appTypeId is an application type that has to be supported by the workers retrieved.

lookupTag is returned by a previous call to either this function or to registryLookUp.

Outputs

totalCount is a total number of entries matching the lookup criteria. If this number is larger than
the number of ids returned so far, the caller should use lookupTag to call registryLookUpNext
to retrieve the rest of the ids.

newLookupTag is an optional parameter. If it is returned, it means that there are more matching
registry ids that can be retrieved by calling this function again with this tag as an input parameter.

ids is an array of the registry ids that match the input parameters

This function retrieves information from the registry.

Inputs

id is the id of the registry whose details are requested.

Outputs

The same as the input parameters to the corresponding call to registryAdd() plus status as
defined in registrySetStatus.

function registryRetrieve(byte32 workerId) public view
 returns (
 string uri,
 byte32 scAddr,
 bytes32[] appTypeIds,
 uint8 status)

function registryLookUpNext(bytes32 applTypeId, string lookUpTag) public
 returns(
 int totalCount,
 string newLookupTag,
 bytes32[] ids)

6.1.6 Retrieving Registry Information

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 16 of 66

APIs in this section are implemented as an Ethereum smart contract referred to as Worker Registry.

This function registers a Worker and is invoked from the Ethereum address of the Trusted Resource
Service using [JSON-RPC] with the digital signature associated with the sending Ethereum
address.

An Implementation-specific model enforces authorization for this call.

Inputs

workerID is a worker id, e.g. an Ethereum address or a value derived from the worker's DID.

workerType defines the type of Worker. Currently defined types are:

1. indicates "TEE-SGX": an Intel SGX Trusted Execution Environment

2. indicates "MPC": Multi-Party Compute

3. indicates "ZK": Zero-Knowledge

APIs specific to each type of Worker are given in Appendix A.

organizationID is an optional parameter representing the organization that hosts the Worker,
e.g. a bank in the consortium or anonymous entity.

applicationTypeId is an optional parameter that defines application types supported by the
Worker.

details is detailed information about the worker in JSON format as defined in Appendix A. This
parameter includes either the worker data, or the registry URI where the data can be retrieved via
JSON RPC API, as defined in section Off-Chain Worker Registry JSON RPC API.

function workerRegister(byte32 workerID,
 uint8 workerType,
 bytes32 organizationID,
 bytes32[] applicationTypeId,
 string details) public

6.2 Worker Registry Smart Contract API

6.2.1 Registering a New Worker

6.2.2 Updating a Worker

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 17 of 66

This function updates a Worker and is invoked from the Ethereum address of the Trusted Resource
Service using [JSON-RPC] with the digital signature associated with the sending Ethereum
address.

Inputs: refer to section "Registing a Worker"

function workerUpdate(byte32 workerID, string details) public

This function sets a Worker's status. An implementation-specific model enforces authorization
policies for this call.

Inputs

workerID is a worker id

status defines Worker status. The currently defined values are:

1. indicates that the worker is active

2. indicates that the worker is "off-line" (temporarily)

3. indicates that the worker is decommissioned

4. indicates that the worker is compromised

function workerSetStatus(byte32 workerID, uint8 status) public

This function retrieves a list of Worker ids that match the input parameters.

The Worker must match all input parameters (AND mode) to be included in the list.

If the list is too large to fit into a single response (the maximum number of entries in a single
response is implementation specific), the smart contract should return the first batch of the results
and provide a lookupTag that can be used by the caller to retrieve the next batch by calling
workerLookUpNext.

All input parameters are optional and can be provided in any combination to select Workers.

Inputs

workerType is a characteristic of Workers for which you may wish to search

6.2.3 Setting Worker Status

6.2.4 Initiating Worker lookup

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 18 of 66

organizationId is an id of an organization that can be used to search for one or more Workers
that belong to this organization

applicationTypeId is an application type that is supported by the Worker

Outputs

totalCount is a total number of entries matching a specified lookup criteria. If this number is
bigger than size of ids array, the caller should use lookupTag to call workerLookUpNext to retrieve
the rest of the ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
Worker ids that can be retrieved by calling function workerLookUpNext with this tag as an input
parameter.

ids is an array of the Worker ids that match the input parameters.

function workerLookUp(
 uint8 workerType,
 bytes32 organizationId,
 bytes32 applicationTypeId) public view
returns(
 int totalCount,
 string LookupTag,
 bytes32[] ids)

This function is called to retrieve additional results of the Worker lookup initiated by
workerLookUp call.

Inputs

workerType is a characteristic of Workers for which you may wish to search.

organizationId is an organization to which a Worker belongs.

applicationTypeId is an application type that has to be supported by the Worker.

lookupTag is returned by a previous call to either this function or to workerLookUp.

Outputs

totalCount is a total number of entries matching this lookup criteria. If this number is larger than
the number of ids returned so far, the caller should use lookupTag to call workerLookUpNext to
retrieve the rest of the ids.

6.2.5 Getting Additional Worker Lookup Results

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 19 of 66

newLookupTag is an optional parameter. If it is returned, it means that there are more matching
Worker ids than can be retrieved by calling this function again with this tag as an input parameter.

ids is an array of the Worker ids that match the input parameters.

function workerLookUpNext(
 uint8 workerType,
 bytes32 organizationId,
 bytes32 applicationTypeId,
 string lookUpTag) public view
 returns(

int totalCount,
string newLookupTag,
bytes32[] ids)

This function retrieves information for the Worker. It can be called from any authorized Ethereum
address.

Inputs

workerId is the id of a Worker to be retrieved.

Outputs

The same as the input parameters to the corresponding call to workerRegister + status as
defined in workerSetStatus.

function workerRetrieve(byte32 workerId) public view
 returns (

uint8 workerType,
string workerTypeDataUri,
bytes32 organizationId,
bytes32[] applicationTypeId,
string details,
uint8 status)

These are the JSON RPC version of the "Worker Registry Smart Contract API". All messages
follow a request-response pattern and are completed synchronously during the same session.

Errors and status are returned using a generic JSON RPC error.

6.2.6 Retrieving Worker Information

6.3 Off-Chain Worker Registry JSON RPC API

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 20 of 66

This message registers a Worker. It does not have a specific response payload; instead, a generic
error response payload is sent back as a response.

{
 "jsonrpc": "2.0",
 "method": "WorkerRegister",
 "id": <integer>,
 "params": {
 "workerId":<hex string or DID>,
 "workerType":<uint>,
 "organizationId":<hex string>,
 "applicationTypeId": [<one or more hex strings>],
 "details":{
 <worker type specific data>
 }
 }
}

method must be WorkerRegister,

params is a collection of the request parameters. Refer to section Registering a New Worker for a
description of the parameters.

This message updates a Worker. It does not have a specific response payload; instead, a generic
error response payload is sent back as a response.

{
 "jsonrpc": "2.0",
 "method": "WorkerUpdate",
 "id": <integer>,
 "params": {
 "workerId":<hex string or DID>,
 "details":{
 <worker type specific data>
 }
 }
}

method must be WorkerUpdate,

6.3.1 Worker Register JSON Payload

6.3.2 Worker Update JSON Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 21 of 66

params is a collection of the request parameters. Refer to section Updating a New Worker for a
description of the parameters.

This message sets a Worker’s status.

It does not have a specific response payload; instead, a generic error response payload is sent back
as a response.

{
 "jsonrpc": "2.0",
 "method": "WorkerSetStatus",
 "id": <integer>,
 "params": {
 "workerId": <hex string or DID>,
 "status": <number>
 }
}

method must be WorkerSetStatus.

workerId is an id of the worker for which to set status.

status can be one of active, offline, decommissioned, or compromised as defined in API
"Setting Worker Status" in section "Worker Registry Smart Contract API".

This message initiates a Worker lookup in the registry.

Its response is defined in section Worker Lookup JSON Response Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkerLookUp",
 "id": <integer>,
 "params": {
 "workerType": <uint>,
 "organizationId": <hex string>,
 "applicationTypeId": [<one or more hex strings>]
 }
}

6.3.3 Worker Set Status JSON Payload

6.3.4 Worker Lookup JSON Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 22 of 66

method must be WorkerLookUp,

params is a collection of the request parameters. Refer to section Initiating Worker Look Up for a
description of the parameters.

This message continues retrieving results initiated by a previous WorkerLookUp message. Its
response is defined in section Worker Lookup Response JSON Payload>.

{
 "jsonrpc": "2.0",
 "method": "WorkerLookUpNext",
 "id": <integer>,
 "params": {
 "workerType": <uint>,
 "organizationId": <hex string>,
 "applicationTypeId": [<one or more hex strings>]
 "lookUpTag": <string>
 }
}

method must be WorkerLookUpNext,

params is a collection of the request parameters. Refer to section Getting Additional Worker
Lookup Results for a description of the parameters.

This payload is sent back to a Requester in response to the request defined in sections Worker
Lookup JSON Payload and Worker Lookup Next JSON Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {
 "totalCount":<integer,
 "lookupTag":<string,
 ids:[<one or more hex strings>]
 }
}

6.3.5 Worker Lookup Next JSON Payload

6.3.6 Worker Lookup Response JSON Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 23 of 66

'result' is a collection of the response specific parameters. Refer to the output parameters in section
Initiating Worker lookup for a description of elements in this object.

This message retrieves a Worker by its ID. Its response is defined in section Worker Retrieve
Response JSON Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkerRetrieve"
 "id": <integer>,
 "params": {
 "workerId": <hex string or DID>
 }
}

method must be WorkerRetrieve,

params is a collection of the request parameters. Refer to section Retrieving Worker Information
for a description of the parameters.

This payload is sent back to a Requester in response to the request defined in section Worker
Retrieve JSON Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {
 "workerType":<uint>,
 "organizationId":<hex string>,
 "applicationTypeId": [<one or more hex strings>],
 "details":{
 <worker type specific data>
 },
 "status": <number>
 }
}

result is a collection of the response-specific parameters. Refer to the output parameters in
section Retrieving Worker Information for a description of the elements in this object.

6.3.7 Worker Retrieve JSON Payload

6.3.8 Worker Retrieve Response JSON Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 24 of 66

workerTypeDataURI defines a URI where detailed Worker type specification information can be
retrieved.

Direct Model: JSON RPC Work Order invocation API over network

Proxy Model: Work order invocation using Ethereum (proxy) smart contract

This section defines a mechanism for executing Work Orders over a network JSON RPC API
outside of the blockchain.

This API can be used in several modes:

Synchronous request-response mode. The exchange of Work Order request and completion
result happen in the same HTTP session. Synchronous mode is for Work Orders that don’t
require a long time to execute.

Result pulling mode. In this mode the ÐApp disconnects after submitting a Work Order
request, then periodically polls the JSON endpoint for the Work Order result

Asynchronous mode. In this mode, a ÐApp provides a URI for receiving the Work Order
result as a part of the Work Order request. The ÐApp disconnects after submitting the Work
Order. On completion of the Work Order, the Worker submits the Work Order result to the
URI provided.

Notification mode. In this mode, A ÐApp provides a URI to receive a notification when the
Work Order is completed. The ÐApp disconnects after submitting the Work Order. When the
Work Order is completed, the Worker sends an event to the URI provided in the Work Order
request. On receiving the event, the client retrieves the Work Order result from the JSON
endpoint.

First, Requester sends a Work Order Request payload in the JSON-RPC based format defined
below.

7. Work Orders

7.1 Direct Model Invocation

7.1.1 Work Order Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 25 of 66

{
 "jsonrpc": "2.0",
 "method": "WorkOrderSubmit",
 "id": <integer>,
 "params": {
 "responseTimeoutMSecs": <integer>,
 "payloadFormat": <string>
 "resultUri": <string>,
 "notifyUri": <string>,
 "workOrderId": <hex string>,
 "workerId": <hex string or DID>,
 "workloadId": <hex string>,
 "requesterId": <hex string>,
 "workerEncryptionKey": <hex string>,
 "dataEncryptionAlgorithm": <string>,
 "encryptedSessionKey": <hex string>,
 "sessionKeyIv": <hex string>,
 "requesterNonce": <hex string>,
 "encryptedRequestHash": <hex string>,
 "requesterSignature": <BASE64 string>,
 "inData": [
 <object>
],
 "outData": [
 <object>
]
 }
}

Parameters

method is set to WorkOrderSubmit.

params is a collection of parameters as per JSON RPC specification. The parameters are defined
below.

responseTimeoutMsecs is a maximum timeout in milliseconds that the caller will wait for the
response. Setting this timeout to zero means that the work order is submitted in the asynchronous
(if resultUri is present), notify (if notifyUri is present), or pull mode (if neither resultUri
nor notifyUri is present). In this case, the TCS should schedule the request for execution and
immediately return an error response with error code set to scheduled. If the timeout is not zero,
the work order is in synchronous mode. The TCS should wait for the work order completion before
returning the response to the participant. If the request cannot be completed within the allocated
interval, the work order should be cancelled and a corresponding error should be returned to the
participant.

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 26 of 66

payloadFormat defines how signatures and data items are formatted in this work order request
and corresponding response. Its values are defined in section Appendix A.

resultUri is an optional parameter. If it is specified, the WorkerService should submit the Work
Order result to this URI. See section Work Order Asynchronous Result.

notifyUri is an optional parameter. If it is specified, the WorkerService should send an event to
this URI upon the Work Order completion. See section Work Order Completion Event.

workOrderId is an id assigned to the Work Order by the Requester and can be registered using
the Work Order Receipts API.

workerId is a worker id to process the work order, e.g. an Ethereum address or its DID.

workloadId is the id of the workload to be executed by the worker. It is optional if the worker
includes a single workload.

requesterId is either the Requester’s Ethereum address or its DID.

workerEncryptionKey is an optional parameter containing the worker encryption key used for
this Work Order. It is useful if a Worker frequently updates its encryption key in the registry and
allows some time overlap in utilizing multiple keys. We assume here that the 'details' submitted
during the registration of a worker contain one or more public keys associated with the worker.

dataEncryptionAlgorithm is an optional parameter that defines an algorithm for encrypting
the data in this work order. The default is the first value in the corresponding parameter for the
worker (defined by workerId). See section Common Data for All Worker Types.

encryptedSessionKey is a one-time encryption key generated by the participant submitting the
work order. It is sent encrypted with the worker's public encryption key. It is used to encrypt
encryptedRequestHash and data item specific data encryption keys. For the latter see Work
Order Data Formats.

sessionKeyIv is an initialization vector if required by the data encryption algorithm
(encryptedSessionKey). The default is all zeros.

requesterNonce is a random string generated by the participant. It is used to calculate a hash of
this work order request.

encryptedRequestHash is a hash of the work order request encrypted with the key provided in
encryptedSessionKey. See section Work Order Signing for the details.

requesterSignature is an optional parameter. See section Work Order Signing for the details.

inData contains either a JWT of the specified data or an array of one or more Work Order inputs,
e.g. state, message containing input parameters. See Work Order Data Formats.

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 27 of 66

outData contains information about what and how the work order execution results should be
delivered. See Work Order Data Formats.

After a Work Order request is received, the Worker Service can respond in one of three ways:

Complete a (short running) Work Order and return the result

Return an error if the Work Order was rejected or its execution failed

Schedule a Work Order to be executed later and return a corresponding status

If a submitted Work Order is completed, its Work Order Result is returned in the following format.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {
 "workOrderId": <hex string>,
 "workloadId": <hex string>,
 "workerId": <hex string>,
 "requesterId": <hex string>,
 "workerNonce": <string>,
 "workerSignature": <BASE64 string>,
 "outData": [
 <object>
]
 }
}

Parameters

result is a collection of parameters as per JSON RPC specification. The parameters are defined
below.

workOrderId is a Work Order id sent in the corresponding Work Order request.

workloadId is optional; if present, it must match a corresponding value from the work order
request.

workerId is optional; if present, it must match a corresponding value from the work order request.

requesterId is optional; if present, it must match a corresponding value from the work order
request.

7.1.2 Work Order Result Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 28 of 66

workerNonce is a random string generated by the worker. It is used to calculate a hash of this
work order response.

workerSignature is a signature of the work order response. See section Work Order Signing for
the details.

outData contains the work order execution results. See Work Order Data Formats.

If the work request fails, is rejected, is scheduled for later execution, or its execution requires a
long time; the Work Order Error Response payload is sent in the following format defined in
section RPC Encoding Conventions.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "error": {
 "code": "integer",
 "message": <string>,
 "data": {
 "workOrderId": <hex string>
 }
 }
}

Parameters

code is an integer number defining an error or Work Order state. Supported values:

Values from -32768 to -32000 are reserved for pre-defined errors in JSON RPC spec

5 means that the Work Order status is "pending" – scheduled to be executed, but not started
yet

6 means that the Work Order status is "processing" – its execution has started, but it has not
been completed yet

Values from 7 to 999 are reserved

All other values can be used by the Worker Service (a.k.a. implementation specific)

data contains additional details about the error that includes:

workOrderId which is a Work Order id as a hexadecimal string.

7.1.3 Work Order Status Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 29 of 66

If a Requester receives a response stating that its Work Order state is "scheduled" or "processing",
it should pull the Worker Service later to get the result. The Requester has two pulling options:

Pull the Worker Service periodically until the Work Order is completed successfully or in
error

Wait for the Work Order Receipt complete event and retrieve a final result. Refer to Work
Order Receipts for more details.

In either case, the Work Order Pull Request must follow the format below:

{
 "jsonrpc": "2.0",
 "method": "WorkOrderGetResult",
 "id": <integer>,
 "params": {
 "workOrderId": <hex string>
 }
}

Parameters

method is set to WorkOrderGetResult.

params is a collection of parameters as per JSON RPC specification. The parameters are defined
below.

workOrderId is a Work Order id that was sent in the corresponding WorkOrderSubmit request.

If the client provides resultUri in the Work Order request payload, the Worker will send the
Work Order execution result to the URI provided in the same format as defined in "Work Order
Result Payload".

The client responds with a payload as defined in section Work Order Status Payload.

If the client provides notifyUri in the Work Order request payload, the Worker sends an event to
the Requester on completion of the Work Order, regardless of whether the Work Order was
completed successfully or not.

7.1.4 Work Order Pull Request Payload

7.1.5 Work Order Asynchronous Result

7.1.6 Work Order Completion Event

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 30 of 66

The event payload format:

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"workOrderId": <hex string>
 }
}

Parameters

result is a collection of JSON RPC parameters, as follows:

workOrderId is the ID of the Work Order sent in the Work Order request.

On receiving this event, the client will pull the Work Order result as defined in section "Work
Order Pull Request Payload" above.

This section defines formats for inData and outData elements within Work Order requests and
responses. The format depends on the value of payloadFormat in the work order request.

inData and outData are sent as arrays of objects with the following JSON elements:

{
 "index": <number>,
 "dataHash": <hex string>,
 "data": <BASE64 string>,
 "encryptedDataEncryptionKey": <hex string>,
 "iv": <hex string>
}

If payloadFormat is set to a custom value, it is an application-specific format.

Below are descriptions of the JSON elements:

index is an index that determines the order of the data items for hash generation. It can also be
used by the worker to identify different inputs and outputs.

dataHash is an optional hash value of the data. It is only applicable to inData in the work order
request and outData in the response.

7.1.7 Work Order Data Formats

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 31 of 66

data contains either data inline within the JSON document or a reference (e.g. URI) to the data. It
is up to the worker to determine how to interpret the data content. This parameter is applicable to

inData in the work order request

outData in the request if it contains a reference for the output

outData in the response

encryptedDataEncryptionKey defines whether data is encrypted and what key to use. It is
only included in the work order request as one of the options below

If this key is not provided or set to "null" or to "", the data is encrypted using
encryptedSessionKey from the Work Order request

If the key value is set to "-", the data item is not encrypted, a.k.a. sent as clear text

Otherwise, the data item is sent encrypted with a one-time encryption key generated by a 3rd
party that owns this data item (it may be different from the Work Order requester).
encryptedDataEncryptionKey contains this encryption key in double encrypted format

First, it is encrypted with the worker's public encryption key (e.g. by a 3rd party that
owns the data so the requester cannot see the data)

Then the result of the previous encryption above is encrypted with the key from
encryptedSessionKey by the requester, to enforce the work order integrity.

iv is an initialization vector, if required by the data encryption algorithm. The default is all zeros.
If the same encryption key is used to encrypt more than one data item or the hash value of the work
order request, iv must be a unique random number for every encryption operation. It is included
only in the Work Order request.

Work Order request and response signing depends on the value of payloadFormat in the work
order request.

for JSON-RPC signing mechanism is defined in section Signing for JSON-RPC format.

for JSON-RPC-JWT signing mechanism is defined in section Signing for JSON-RPC-JWT
format.

for custom values the signing mechanism is application-specific, and is not defined in this
specification.

Note that there are two mechanisms ensuring the integrity of a work order request:

encryptedRequestHash contains the hash of the work order request encrypted with a key
from encryptedSessionKey. This mechanism ensures the request integrity even in the case

7.1.8 Work Order Signing

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 32 of 66

of an anonymous requester. The hash value in this case is verified by the worker.

requesterSignature is an optional signature that uses the same calculated hash value and
signs it with the requester's private signing key. Distribution of the corresponding public keys
is outside of the scope of this specification. The signature is verified either by the service or by
the worker. The signature use is application-specific, and it is optional for the request integrity
verification. It can be used for the requester authentication and the Work Order authorization
outside or inside of the worker itself.

A Work Order request's signature is always generated by the worker that processed the Work
Order.

This section defines steps for a Work Order request's hash calculation and encryption. All data
transmitted in BASE64 or HEX format have to be decoded for the hash calculation.

The hashing algorithm is defined in the Worker's parameter hashingAlgorithm, as per section
Common Data for All Worker Types.

First, the requester calculates the Work Order request hash:

Generate a random number and store its hash in requesterNonce.

Calculate a hash value of the string concatenating the following values: requesterNonce,
workOrderId, workerId, workloadId, and requesterId.

For each item in the inData array calculate a hash value of the array concatenating
dataHash, data, encryptedDataEncryptionKey, iv. The array items are ordered
according to the index field. If data is encrypted, the hash is calculated over the encrypted
data. If `encryptedDataEncryptionKey contains an encrypted key, the hash is calculated over
the encrypted data.

For each item in the outData array, calculate a hash value of the array concatenating
dataHash, data, encryptedDataEncryptionKey, iv. The array items are ordered
according to the index field. If data is encrypted, the hash is calculated over the encrypted
data. If `encryptedDataEncryptionKey contains an encrypted key, the hash is calculated over
the encrypted data.

Combine all hashes calculated above into a single array in the order they were generated.
Calculate another hash of the combined array.

Then the requester must encrypt the calculated hash and include it in the Work Order request:

Encrypt the combined hash with a key from encryptedSessionKey

Format the encrypted hash as a HEX value

7.1.8.1 Request Hash Calculation and Encryption

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 33 of 66

Place it in the encryptedRequestHash parameter of the Work Order request

Optionally, the calculated hash can be signed by the requester in one of the two formats as defined
in sections Signing for JSON-RPC Format and Signing for JSON-RPC-JWT Format.

This section defines the Work Order response hash calculation. All data transmitted in BASE64 or
HEX format have to be decoded for the hash calculation.

The hashing algorithms is defined in Worker's parameter hashingAlgorithm, See section
Common Data for All Worker Types.

The worker performs the following steps:

Generate a random number and store its hash in workerNonce.

Calculate a hash value of the string concatenating following values workerNonce,
workOrderId, workerId, workloadId, and requesterId.

For each item in the outData array, calculate a hash value of the array concatenating
dataHash and data. The array items are ordered according to the index field. If data is
encrypted, the hash is calculated over the encrypted data.

Combine all hashes calculated above into a single array in the order they were generated.
Calculate another hash of the combined array.

This section defines a Work Order signing mechanism for the JSON-RPC payload format.

For a Work Order request, the signature is optional. If a signature is provided, it is generated
according to the following steps:

The signing algorithm is defined in Worker's parameter signingAlgorithm, as per section
Common Data for All Worker Types.

The Work Order request hash defined in section Request Hash Calculation and Encryption is
signed with requester's private signing key.

The signature is formatted as a BASE64 string.

The resulting string is placed in the requesterSignature of the Work Order request
payload.

For a Work Order Response, the following steps are performed by the worker:

7.1.8.2 Response Hash Calculation

7.1.8.3 Signing for JSON-RPC Format

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 34 of 66

The signing algorithm is defined in Worker's parameter signingAlgorithm, as per section
Common Data for All Worker Types.

The Work Order response hash defined in section Response Hash Calculation is signed with
the worker's private signing key.

The signature is formatted as a BASE64 string.

The resulting string is placed in the workerSignature of the Work Order response payload.

This section defines the Work Order signing mechanism for the JSON-RPC-JWT payload format.

The Work Order request requesterSignature and response workerSignatures are JWT
formatted strings.

The JWT header must include hashing and signing algorithms that match hashingAlgorithm and
signingAlgorithm parameters of the Worker. See section Common Data for All Worker Types.

The JWT payload is in the following format:

{
"hash": <HEX string>
}

The Work Order request hash parameter contains a value as defined in Request Hash Calculation
and Encryption.

The Work Order response hash parameter contains a value as defined in Response Hash
Calculation.

This section defines a JSON RPC request that is called by a requester to receive a Worker's key.
Normally, it is used if the Worker supports requester-specific encryption keys in addition to or
instead of the encryptionKey defined in section Appendix A: Worker Specific Detailed Data.

If this request fails, then a Work Order Status Payload is returned. The following values are defined
for the code parameter:

1 - generic error

2 - operation is not supported

3 - invalid parameter

7.1.8.4 Signing for JSON-RPC-JWT Format

7.1.9 Get Encryption Key Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 35 of 66

4 - access denied

5 - not ready, retry later. This is a recoverable error that may happen if the requester makes its
first request for keys, or the requester retrieves keys, faster than the worker produces them.
The requester should retry later.

If this request succeeds, the response is defined in section Get Encryption Key Response Payload.

The payload format:

{
 "jsonrpc": "2.0",
 "method": "EncryptionKeyGet",
 "id": <integer>,
 "request": {
 "workerId": <hex string>,
 "lastUsedKeyNonce": <hex string>,
 "tag": <hex string>,
 "requesterId": <hex string>,
 "signatureNonce": <hex string>,
 "signature": <BASE64 string>
 }
}

method must be EncryptionKeyGet.

workerId is the id of the worker whose encryption key is requested.

lastUsedKeyNonce is an optional nonce associated with last retrieved key. If it is provided, the
key retrieved should be newer than this one. Otherwise any key can be retrieved.

tag is tag that should be associated with the returned key, e.g. requester id. This is an optional
parameter. If it is not provided, requesterId is used as a key.

requesterId is the id of the requester that plans to use the returned key to submit one or more
work orders using this key.

signatureNonce is an optional parameter and is used only if signature below is also provided.

signature is an optional signature of workerId, lastUsedKeyNonce, tag, and
signatureNonce. The hashing and signing algorithms are defined in hashingAlgorithm and
encryptionAlgorithm for the Worker in section Common Data for All Worker Types.

7.1.10 Get Encryption Key Response Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 36 of 66

This section defines a payload returned by the Worker Service in response to successful Get
Encryption Key Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "request": {
 "workerId": <hex string>,
 "encryptionKey": <hex string>,
 "encryptionKeyNonce": <hex string>,
 "tag": <hex string>,
 "signature": <BASE64 string>
 }
}

workerId is the id of the worker that created the encryption key.

encryptionKey is an encryption key.

encryptionKeyNonce is a nonce associated with the key.

tag is tag associated with the key.

signature is a signature generated by the worker. The hashing and signing algorithms are defined
in hashingAlgorithm and encryptionAlgorithm for the worker in section Common Data for
All Worker Types. The signature is calculated as follows:

a hash is calculated over the concatenation of workerId, encryptionKey,
encryptionKeyNonce, and tag.

the hash is signed by the worker's signing key corresponding to verificationKey defined
in Appendix A.

the hash is formatted as BASE64 string.

This section defines a JSON RPC request that is called by a Worker or Worker Service to receive a
Worker's key.

The response to this request is a Work Order Status Payload. The error values are defined in section
Set Encryption Key Request Payload

The payload format:

7.1.11 Set Encryption Key Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 37 of 66

{
 "jsonrpc": "2.0",
 "method": "EncryptionKeySet",
 "id": <integer>,
 "request": {
 "workerId": <hex string>,
 "encryptionKey": <hex string>,
 "encryptionKeyNonce": <hex string>,
 "tag": <hex string>,
 "signatureNonce": <hex string>,
 "signature": <BASE64 string>
 }
}

method must be EncryptionKeySet.

Other parameters are defined in section Get Encryption Key Response Payload.

This section defines a Work Order execution mechanism using the Invocation proxy Ethereum
smart contract created by the WorkerService for its associated Worker(s). Its address is available in
the Worker Service Registry.

This function creates a new Work Order. It is called by a ÐApp or an enterprise application smart
contract from the Requester’s address. The Proxy Smart Contract is called by a ÐApp or an
enterprise application from the Requester’s Ethereum address.

As a side effect this function may create a Work Order Receipt for the Work Order.

This function emits event workOrderNew.

This function uses an implicit parameter transaction sender that is included in the event
workOrderNew and returned by workOrderGetRequest.

Inputs:

workOrderId should match the corresponding field in the workOrderRequest.

workerId should match the corresponding field in the workOrderRequest.

requesterId is a requester id that must match the corresponding field in the workOrderRequest.

7.2 Proxy Model Invocation

7.2.1 Submitting a New Work Order

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 38 of 66

workOrderRequest is a Work Order request data in one of the following formats

JSON payload as defined in the details of the workOrderRequest in section Direct Model
Invocation.

HTTP(S) URI that points to the same JSON payload as above. A URI is normally used to
minimize the storage required to store the work order on the blockchain.

Outputs:

errorCode is an error code, 0 - success, otherwise an error.

function workOrderSubmit(
 bytes32 workOrderId,
 bytes32 workerId,
 bytes32 requesterId,
 string workOrderRequest) public returns uint32 errorCode

This event is emitted by workOrderSubmit function; workOrderId is the submitted Work Order
id.

This event is intended for the Worker(s) that is supposed to execute the Work Order.

Parameters

workOrderId, workerId, requesterId, workOrderRequest, and errorCode are defined in
section Submitting a New Work Order.

senderAddress is an Ethereum address from which a corresponding workOrderSubmit() call was
done.

version is a version of the API, e.g. value 0x01020381 corresponds to version "1.2.3.129".

event workOrderNew (bytes32 indexed workOrderId,
 bytes32 indexed workerId,
 bytes32 indexed requesterId,
 string workOrderRequest,
 uint32 errorCode,
 address senderAddress,
 byte4 version)

7.2.2 New Work Order Event

7.2.3 Completing a Work Order

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 39 of 66

This function is called by the Worker Service to complete a Work Order successfully or in error.

This function can be executed either from the Worker or Worker Service address.

This function may emit event workOrderDone.

Inputs:

workOrderId is an id of the Work Order provided during call to workOrderSubmit.

workOrderStatus is the work order completion status. Zero is success, otherwise is an error.

workOrderResponse is the Work Order response data in one of the following formats

JSON payload as defined in the details of the workOrderRequest in section Direct Model
Invocation.

HTTP(S) URI that points to the same JSON payload as above. A URI is normally used to
minimize storage required to store the work order on the blockchain.

Outputs:

errorCode is an error code, 0 - success, otherwise an error.

function workOrderComplete(bytes32 workOrderId,
 uint32 workOrderStatus,
 string workOrderResponse) public returns (uint32 errorCode)

This event is emitted by workOrderComplete. This event is intended for the Requester who
submitted the Work Order.

Inputs:

requesterId is an Id of the Requester that submitted the Work Order

workOrderId, workOrderStatus, workOrderResponse, and errorCode are defined in
section Completing a Work Order.

version is the version of the API, e.g. value 0x01020381 corresponds to version "1.2.3.129"

7.2.4 Work Order Done Event

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 40 of 66

event workOrderDone(bytes32 requesterId,
bytes32 workOrderId,
uint32 workOrderStatus,
string workOrderResponse,
uint32 errorCode,
bytes4 version)

This is an optional function that returns a Work Order response. It is recommended to only allow
this function to be called from the address of the Requester who submitted this Work Order.

Inputs:

workOrderId is an id of the Work Order for which to retrieve a response

Outputs:

workOrderId, workOrderStatus, workOrderResponse, and errorCode are defined in
section Completing a Work Order.

function workOrderGetResult(bytes32 workOrderId) public view
 returns(uint32 errorCode,

bytes32 workOrderId,
uint32 workOrderStatus,
string workOrderResponse)

)

This function is used by the Worker Service to set an encryption key, e.g. for a specific requester.

Inputs:

workerId, keyNonce, tag, and signature are defined in section Get Encryption Key Response
Payload.

Outputs:

errorCode is the result of the operation. Zero is success, other values indicate an error occurred.

This function may emit the event encryptionKeySet defined in section Encryption Key Set
Event

7.2.5 Retrieving Work Order Response Information

7.2.6 Setting Encryption Key

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 41 of 66

function encryptionKeySet(bytes32 workerId,
bytes32 tag,
bytes32 nonce,
bytes signature) public returns (uint32 errorCode)

)

This event is emitted by encryptionKeySet.

Inputs:

Its parameters defined in section Setting Encryption Key.

event encryptionKeySet(bytes32 indexed workerId,
bytes32 indexed tag,
bytes32 nonce,
bytes signature
uint32 indexed errorCode)

This function is used by the requester to get an encryption key.

Inputs:

Input parameters are defined in section Set Encryption Key Request Payload.

Outputs:

errorCode is the result of the operation. Its values are defined in section Get Encryption Key
Request Payload. If errorCode is "5 - not ready, retry later", the requester should call function
encryptionKeyStart() defined in section Starting Encryption Key Generation.

Other output parameters are defined in section Setting Encryption Key.

7.2.7 Encryption Key Set Event

7.2.8 Retrieving Encryption Key

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 42 of 66

function encryptionKeyRetrieve(bytes32 workerId,
 bytes32 lastUsedKeyNonce,
 bytes32 tag,
 bytes32 requesterId) public view
 returns(uint32 errorCode,

bytes32 workerId,
bytes32 tag,
bytes32 nonce,
bytes signature

)

This function is used by the requester to inform the Worker that it should start encryption key
generation for this requester (and/or tag).

Inputs:

tag is an optional parameter. If it is zero, the transaction sender's address is used as a tag.

Outputs:

errorCode is a result of operation. Its values are defined in section Get Encryption Key Request
Payload.

This function may emit the event encryptionKeyStart defined in section Encryption Key Start
Event

function encryptionKeyStart(bytes32 tag) returns(uint32 errorCode),
)

This event is emitted by encryptionKeyStart.

Inputs:

requesterAddress is a sender address who submitted a corresponding call to
encryptionKeyStart.

tag and serrorCode are defined in section Starting Encryption Key Generation.

7.2.9 Starting Encryption Key Generation

7.2.10 Encryption Key Start Event

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 43 of 66

event encryptionKeyStart(bytes32 indexed requesterAddress,
bytes32 indexed tag,
uint32 indexed errorCode)

This chapter defines two modeLs for Work Order Receipts:

Smart contract mode when receipts are managed by an Ethereum Work Order Receipts smart
contract.

Direct model when receipts are managed off-chain and accessed via JSON RPC API.

This API provides the following capabilities:

Creating Work Order receipt by the Requester.

Updating Work Order by the Requester, by the Worker assigned to execute the work order, or
any other authorized participant.

Retrieving a Work Order Receipt information.

Retrieving Work Order Receipt updates.

Enumerating Work Order Receipts.

Generating Ethereum log events on the receipt create and update.

This function is implemented by Work Order Receipts smart contract and is called by a Requester,
or on behalf of a Requester, to create a Work Order Receipt in the submitted state.

The sender address is an implicit parameter that is saved as a part of the receipt.

Inputs:

workOrderId is the id of the Work Order.

workerId is the Worker id that should execute the Work Order.

workerServiceId is an id of the Worker Service that hosts the Worker.

requesterId is the id of the requester.

8. Work Order Receipts

8.1 Proxy Model Receipt Handling

8.1.1 Creating a Work Order Receipt

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 44 of 66

receiptCreateStatus is an initial receipt status, it can be

0 - "pending". The work order is waiting to be processed by the worker

1 - "completed". The worker processed the Work Order and no more worker updates are
expected

2 - "processed". The worker processed the Work Order, but additional worker updates are
expected, e.g. oracle notifications

3 - "failed". The Work Order processing failed, e.g. by the worker service because of an
invalid workerId

4 - "rejected". The Work Order is rejected by the smart contract, e.g. invalid workerServiceId

values from 5 to 254 are reserved

value 255 indicates any status

values above 255 are application specific values

workOrderRequestHash is a hash value of the work order request as defined in section
Submitting a New Work Order.

Outputs:

errorCode is a result of the function. A value of '0' indicates success, other values indicate an
error occurred.

function workOrderReceiptCreate(bytes32 workOrderId,
 bytes32 workerId,
 bytes32 workerServiceId,
 bytes32 requesterId,
 uint32 receiptCreateStatus,
 bytes workOrderRequestHash) public returns (uint32 errorCode)

This API is implemented by a Work Order Receipts smart contract and it can be called by one of
the following participants:

By or on the behalf of the Worker identified during the receipt creation, e.g. to notify about the
work order completion

By or on the behalf of other Workers, e.g. to submit an oracle notification

By the Work Order Receipt creator (requester)

By other participants, e.g. to acknowledge the Work Order results in case of multi-party Work
Order processing

8.1.2 Updating a Work Order Receipt

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 45 of 66

Inputs:

workOrderId is the id of the Work Order.

updaterId is the id of the updating entity. It is optional, if it is the same as the transaction sender
address.

updateType is a type of the Work Order update that defines how the update should be handled

If updateType is from 0 to 255, the update sets the receipt status to updateType value, as
descrined in section Creating a Work Order Receipt

If it is any other value, the processing is application-specific

updateData are update-specific data that depend on the 'workOrderStatus` as follows:

If the update sets the Work Order Receipt status to completed or processed, it is a hash
value of the Work Order Response

in all other cases, updateData has an application-specific value not define by this
specification.

updateSignature is an optional signature of workOrderId, updateType, and updateData. It
is required only if the updaterId is not the same as the transaction sender address. The hashing
and signing algorithms are defined by signatureRules.

signatureRules defines hashing and signing algorithms, that are separated by forward slash '/',
e.g. "SHA-256/RSA-OAEP-4096". It is an optional parameter and it is required if signing
algorithms are different from the algorithms defined for the Worker defined during the receipt
creation.

Outputs:

errorCode is the result of the function. A value of '0' indicates success, other values indicate that
an error occurred.

function workOrderReceiptUpdate(bytes32 workOrderId,
 bytes32 updaterId,
 uint32 updateType,
 bytes updateData,
 bytes updateSignature,
 string signatureRules) public returns (uint32 errorCode)

Authorized entities can retrieve a Work Order receipt using this function.

8.1.3 Retrieving a Work Order Receipt

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 46 of 66

Inputs:

workOrderId is the id of the Work Order to be retrieved.

Outputs:

workerServiceId, requesterId, ``workOrderId, receiptCreateStatus, and
workOrderRequestHash are defined in section Creating a Work Order Receipt.

currentReceiptStatus matches

the receiptCreateStatus at the time of the receipt creation, if there have not been any
receipt updates changing its status

the status set by the latest receipt update

function workOrderReceiptRetrieve(bytes32 workOrderId) public view
 returns(bytes32 workerServiceId,
 bytes32 workerId,
 bytes32 requesterId,
 uint32 receiptCreateStatus,
 bytes workOrderRequestHash,
 uint32 currentReceiptStatus)

Authorized entities can retrieve a Work Order receipt update using this function.

Inputs:

workOrderId is the id of the Work Order to be updated.

updaterId is the id of the updating entity. If it null, updaterId is ignored.

updateIndex is an index of the update to retrieve. Value "0xFFFFFFFF" is reserved to retrieve
the last received update.

Outputs:

updaterId, updateType, updateData, updateSignature, and signatureRules are defined
in section Updating a Work Order Receipt.

updateCount contains the total number of updates for this receipt, if updaterId is null,
otherwise the total number of updates made by 'updaterId'.

8.1.4 Retrieving a Work Order Receipt Update

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 47 of 66

function workOrderReceiptUpdateRetrieve(bytes32 workOrderId,
bytes32 updaterId,
int4 updateIndex) public view returns(bytes32 updaterId,

uint32 updateType,
bytes updateData,
bytes updateSignature,
string signatureRules,
uint32 updateCount)

This function retrieves a list of receipt Ids filtered by one or more input parameters. If more than
one input parameter is provided, a receipt must match all parameters to be included in the list
(Boolean AND operation).

Inputs:

workerServiceId is the id of the Worker Service whose receipts will be retrieved.

workerId is the Worker id whose receipts are requested.

requesterId is the id of the entity requesting receipts.

receiptStatus defines the status of the receipts retrieved. The supported values are defined in
section Creating a Work Order Receipt.

Outputs:

totalCount is the total number of receipts matching the lookup criteria. If this number is larger
than the size of the ids array, the caller should use a lookupTag to call
workOrderReceiptLookUpNext to retrieve the rest of the receipt ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
receipts than can be retrieved by calling workOrderReceiptLookUpNext with this tag as an
input parameter.

ids is an array of the Work Order receipt ids that match the input parameters.

8.1.5 Work Order Receipt Lookup

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 48 of 66

function workOrderReceiptLookUp(bytes32 workerServiceId,
 bytes32 workerId,
 bytes32 requesterId,
 uint32 receiptStatus) public view
 returns(

int totalCount,
string lookUpTag, //OPTIONAL
bytes32[] ids)

This function is called to retrieve additional results of the Work Order receipt lookup initiated by
the workOrderReceiptLookUp call.

Inputs:

workerServiceId, workerId, and requesterId are input parameters and lastLookupTag is
one of the output parameters for the function workOrderReceiptLookUp defined in section Work
Order Receipt Lookup.

Outputs:

totalCount is the total number of receipts matching the lookup criteria.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
receipts, that can be retrieved by calling this function again with this tag as an input parameter.

ids is an array of the Work Order receipt ids that match the input criteria from the corresponding
call to workOrderReceiptLookUp.

function workOrderReceiptLookUpNext(byte32 workerServiceId,
 bytes32 workerId,
 bytes32 requesterId,
 uint32 receiptStatus,
 string lastLookUpTag) public view
 returns(

int totalCount,
string lookUpTag,
bytes32[] ids)

The smart contract can use the Ethereum event log for receipt updates.

8.1.6 Work Order Receipt Lookup Next

8.1.7 Work Order Receipt Update Event

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 49 of 66

An event as described below is emitted by the function workOrderReceiptUpdate. Its
parameters are defined in section Updating a Work Order Receipt.

event workOrderReceiptUpdated(bytes32 indexed workOrderId,
 bytes32 indexed updaterId,
 bytes32 indexed updateType,
 bytes updateData,
 bytes updateSignature,
 string signatureRules,
 uint32 errorCode)

The smart contract can use the Ethereum event log to capture receipt creation.

An event as decribed below is emitted by function workOrderReceiptCreate. Its parameters
are defined in section Creating a Work Order Receipt.

Work Order Receipt management can be done off-chain by a dedicated service, or in some cases by
a Worker Service itself.

This section defines the Work Order Receipts JSON RPC API to support this model. Requesters
and Workers invoke this API without relying on blockchain smart contracts, hence this is called the
"direct model".

This API assumes a synchronous request-response model when the result is returned during the
same HTTP session. An asynchronous mode is not defined in this revision, but may be added later.

All error responses and status are reported in the format defined in the section RPC Encoding
Conventions. This format is also used to report a successful request if the request does not assume

event workOrderReceiptCreated(bytes32 indexed workO
 bytes32 indexed workerServiceId,
 bytes32 workerId,
 bytes32 indexed requesterId,
 bytes32 receiptStatus,
 bytes workOrderRequestHash,
 uint32 errorCode)</pre>

8.1.8 Work Order Receipt Create Event

8.2 Direct Model Receipt Handling

8.2.1 Status and Error Payload Structure

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 50 of 66

any return values, e.g. creating a Work Order receipt.

This request is sent by a Requester to create a new Work Order Receipt. This request does not have
a specific corresponding response payload, hence the error and status payload is used as a response.

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptCreate",
 "id": <integer>,
 "params": {

"workOrderId": <hexadecimal string>
"workerServiceId": <hexadecimal string>,
"workerId": <hexadecimal string>,
"requesterId":< <hexadecimal string>,
"receiptCreateStatus":< <number>,
"workOrderRequestHash": <base64 string>
"requesterGeneratedNonce": <hexadecimal string>,
"requesterSignature": <base64 string>,
"signatureRules": <string>

 }
}

method must be WorkOrderReceiptCreate.

params is a collection of the request parameters below:

workOrderId, workerServiceId, workerId, requesterId, receiptCreateStatus, and
workOrderRequestHash are defined in section Creating a New Work Order Receipt.

requesterGeneratedNonce is a random number or a monotonic counter generated by the
Requester and included in the signature below.

requesterSignature is a signature of the hash calculated over the the concatenated
workOrderId, workerServiceId, workerId, requesterId, workOrderStatus,
workOrderRequestHash and requesterGeneratedNonce parameters. Hashing and signing
algorithms are defined by the signatureRules parameter. Verification key provisioning is
application-specific, e.g. it can be an explicit mapping between the key and requesterId or
requesterId can be an Ethereum address or a verification key itself.

signatureRules defines hashing and signing algorithms, that are separated by a forward slash '/',
e.g. "SHA-256/RSA-OAEP-4096". It is an optional parameter and it is required if the signing
algorithms are different from the algorithms defined for the Worker defined by workerId.

8.2.2 Receipt Create Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 51 of 66

This request payload is sent to update the Receipt. This request does not have a specific
corresponding response payload - a generic error response is returned.

{
 "jsonrpc": "2.0",
 "method": " WorkOrderReceiptUpdate",
 "id": <integer>,
 "params": {

"workOrderId": <hexadecimal string>,
"updaterId": <hexadecimal string>,
"updateType": <number>,
"updateData": <base64 strings>,
"updateSignature": <base64 string>,
"signatureRules": <base64 string>

 }
}

method must be WorkOrderReceiptUpdate.

params is a collection of the parameters defined in section Updating a New Work Order Receipt
with the following exceptions:

updateSignature is always required

If an updating entity is a Worker, than the Worker's verification key is used to verify the
signature

If an updating entity is not a worker (requester, participant), the verification key provisioning
is application-specific, e.g. it can be an explicit mapping between the key and requesterId
or requesterId can be an Ethereum address or a verification key itself.

This request is sent to retrieve a Work Order Receipt. The response to this request is defined in
section Receipt Retrieve Responce Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptRetrieve",
 "id": <integer>,
 "params": {

"workOrderId": <hexadecimal string>
 }
}

8.2.3 Receipt Update Request Payload

8.2.4 Receipt Retrieve Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 52 of 66

method must be WorkOrderReceiptRetrieve.

params is a collection of the parameters defined in section Updating a New Work Order Receipt.

This payload is returned to a Requester in response to the request defined in section Receipt
Retrieve Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"workOrderId": <hexadecimal string>
"workerServiceId": <hexadecimal string>,
"workerId": <hexadecimal string>,
"requesterId":< <hexadecimal string>,
"requestCreateStatus":< <number>,
"workOrderRequestHash": <base64 string>
"requesterGeneratedNonce": <hexadecimal string>,
"requesterSignature": <base64 string>,
"signatureRules": <string>,
"receiptCurrentStatus": <number>

 }
}

result is a collection of the parameters defined in section Receipt Create Request Payload.

This request is sent to retrieve a Work Order Receipt Update. The response to this request is
defined in section Receipt Update Retrieve Response Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptUpdateRetrieve",
 "id": <integer>,
 "params": {

"workOrderId": <hexadecimal string>,
"updaterId": <hexadecimal string>,
"updateIndex": < number>

 }
}

8.2.5 Receipt Retrieve Response Payload

8.2.6 Receipt Update Retrieve Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 53 of 66

method must be WorkOrderReceiptUpdateRetrieve.

params is a collection of the input parameters defined in section Retrieving a Work Order Receipt
Update.

This payload is sent back to a Requester in response to the request defined in section Work Order
Receipt Retrieval Request Payload.

{ "jsonrpc": "2.0",
"id": <integer>,
"result": {

 "updaterId": <hexadecimal string>,
 "updateType": <number>,
 "updateData": <base64 strings>,
 "updateSignature": <base64 string>,
 "signatureRules": <base64 string>,
 "updateCount": < number>
}

}

result is a collection of the parameters below:

updaterId, updateType, updateData, updateSignature, and signatureRules are defined
in section Receipt Update Request Payload.

updateCount contains the total number of updates for this receipt, if the updaterId is null.
Otherwise it returns the total number of updates made by the entity whose id is 'updaterId.

This payload is sent by a Requester to get a list of Work Order Receipt Ids matching the input
parameters. If more than one input parameter is provided, a receipt must match all parameters to be
included in the list (Boolean AND Operation).

The response to this request is defined in section Receipt Lookup Response Payload. Note that the
response may not provide a complete list of matching ids, and the Requester may need to send one
or more WorkOrderReceiptLookUpNext calls in order to retrieve the complete list.

8.2.7 Receipt Update Retrieve Response Payload

8.2.8 Receipt Lookup Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 54 of 66

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptLookUp",
 "id": <integer>,
 "params": {

"workerServiceId": <hex string>,
"workerId": <hex string>,
"requesterId": <hex string>,
"receiptStatus": <hex string>

 }
}

method must be WorkOrderReceiptLookUp.

params is a collection of the input parameters defined in section Work Order Receipt Lookup.

This payload is sent back to a Requester in response to the request defined in sections Receipt
Lookup Request Payload and Receipt Lookup Next Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"totalCount": <int>,
"lookUpTag": < string>, //OPTIONAL
"ids":[<hexadecimal string>]

 }
}

result is a collection of the output parameters defined in section Work Order Receipt Lookup.

This function is called to retrieve additional results of the Work Order receipt lookup initiated by
the request defined in section Receipt Lookup Request Payload. Since the call may not return the
complete list of ids, more than one lookup may be necessary to retrieve the complete list. Each call
should use the value of lookupTag returned by the previous call.

The response to this request is defined in section Work Order Receipt Lookup Response Payload.

8.2.9 Receipt Lookup Response Payload

8.2.10 Receipt Lookup Next Request Payload

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 55 of 66

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptLookUpNext",
 "id": <integer>,
 "params": {
 "workerServiceId": <hexadecimal string>,
 "workerId": <hexadecimal string>,
 "requesterId": <hexadecimal string>,
 "receiptStatus": < hexadecimal string>,
 "lastLookUpTag": <hexadecimal string>
 }
}

method must be WorkOrderReceiptLookUpNext,

params is a collection of the input parameters defined in section Work Order Receipt Lookup.

This appendix defines data to be included in the details parameter defined in section Registering
a New Worker. These include data common to all worker types, and data specific to each worker
type.

{
 "workOrderSyncUri": <hex string>,
 "workOrderAsyncUri": <hex string>,
 "workOrderPullUri": <hex string>,
 "workOrderNotifyUri": <hex string>,
 "receiptInvocationUri": <hex string>,
 "workOrderInvocationAddress": <hex string>,
 "receiptInvocationAddress": <hex string>,
 "fromAddress": <hex string>,
 "hashingAlgorithm": <string>,
 "signingAlgorithm": <string>,
 "keyEncryptionAlgorithm": <string>,
 "dataEncryptionAlgorithm": <string>,
 "workOrderPayloadFormats": [<hex string>],
 "workerTypeData" : { …}
}

9. Appendix A: Worker Specific Detailed Data

9.1 Common Data for All Worker Types

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 56 of 66

workOrderSyncUri, workOrderAsyncUri, workOrderPullUri, and workOrderNotifyUri
are URIs to be used in the direct model to submit work orders, and correspondingly in
synchronous, asynchronous, pull, and notification modes. Multiple Workers belonging to the same
organization can share the same URI.

receiptInvocationURI is a URI that should be used to manage Work Orders receipts processed
by this Worker in the direct model. Multiple Workers such as Workers belonging to the same
organization can share the same URI.

workOrderInvocationAddress is an address of the Work Order Invocation Proxy smart
contract that should be used to submit Work Orders for the Worker in the proxy model.

receiptInvocationAddress is an address of the Work Order Receipt smart contract that should
be used to submit Work Order receipts in the proxy model. Multiple Workers can share the same
address.

fromAddress is an Ethereum address that is used by or on behalf of this Worker to submit
transactions. It can be the same as the trusted compute service's id.

hashingAlgorithm is an optional string containing a comma-separated list of the supported
hashing algorithms. The default is SHA-256. Defined values are:

SHA-256

KECCAK-256

signingAlgorithm is an optional string containing a comma-separated list of the supported
signing algorithms. The default is SECP256K1. Examples:

SECP256K1

RSA-OAEP-3072

keyEncryptionAlgorithm is a string containing an asymmetric encryption algorithm used by
the worker to encrypt symmetric data encryption key, e.g. RSA-OAEP-3072.

dataEncryptionAlgorithm is an optional string containing a comma-separated list of the
supported data encryption algorithms, e.g. AES-GCM-256. For an AES GSM encrypted message
starts with the tag that is followed by the cypher text.

workOrderPayloadFormats defines the formats for Work Order requests and responses. A
Worker may support multiple formats. This specification currently defines the following payload
formats (this list is expected to grow):

JSON-RPC – the payloads are provided in JSON RPC format as defined in section RPC
Encoding Conventions without using JWT format for signatures.

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 57 of 66

JSON-RPC-JWT – the payloads are provided in JSON RPC format as defined in section RPC
Encoding Conventions. In this case JWT format is used for the signatures.

Custom Work Order payload formats should start with tilde "~".

workerTypeData contains the Worker type specific details defined below.

This section currently includes details for Intel SGX. Details for other TEEs may be added in the
future.

This subsection defines data for the "TEE-SGX" worker type. Refer to parameter workType in
section Registering a New Worker.

Identification and attestation payload:

{
 "workerTypeData": {
 "verificationKey": <hex string>,
 "extendedMeasurements": [<string>],
 "proofDataType": <hex string>,
 "proofData": {...},
 "encryptionKey": <optional hex string>,
 "encryptionKeyNonce": <optional hex string>,
 "encryptionKeySignature": <optional hex string>,
 "enclaveCertificate": <optional string>
 }
}

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is a hex string representing an ECDSA/SECP256K1 public key used to verify
signatures created by the Enclave. This field must be included in the proofData.

extendedMeasurements is a string that implements application-specific logic. For example, in
the case of an enclave pool including more than one type of enclave (each having a different
MRENCLAVE value), this parameter may contain a comma separated list of hexadecimal strings,
one for each MRENCLAVE. See Load Balancing and Enclave pools

Requesters are expected to verify the Enclave measurements off-chain unless the blockchain client
contains a pre-compiled contract that verifies the Enclave measurements on-chain at the Enclave's

9.2 TEE Worker Data

9.2.1 Intel SGX Worker Type Data

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 58 of 66

registration time. For details on the matching mechanism refer to https://software.intel.com/en-
us/sgx.

proofDataType is one of the "TEE-" prefixed data types. Currently only the Intel SGX proof data
type is defined. More types may be defined later.

TEE-SGX-IAS indicates that an Intel Attestation Server (IAS) issued a verification report for
this worker.

proofData is the worker attestation data. Its format is defined below in sub-section "Proof Data
Format".

encryptionKey is a hex string representing an RSA public key used to encrypt data sent to the
Enclave. This field must be signed as described in encryptionKeySignature.

encryptionKeyNonce is a hex string. It is either a random number or a monotonic counter
updated every time a new encryptionKey is generated.

encryptionKeySignature is a hex string representing a signature of encryptionKey signed
with the worker's private signing key. The requester must verify the signature using
'verificationKey'. It is not required if 'enclaveCertificate` is provided.

enclaveCertificate is a string representing the enclave certificate signed by worker's private
signing key, and must include the encryptionKey and encryptionKeyNonce. The enclave
certificate should be in X.509 format.

Please note that at least one of the two options are mandatory for a requester's verification:

Provide encryptionKey and encryptionKeySignature in the workerTypeData
payload.

Fill enclaveCertificate in the workerTypeData payload.

Proof Data Format

For `TEE_SGX-IAS`, the `proofData` is in the following format:

{
 “X-IASReport-Signature”:<required, base64>,
 ”X-IASReport-Signing-Certificate”: <required, string>,
 “Advisory-URL”: <optional, string>,
 “Advisory-IDs”: <optional, string>,
 “Verification-report”:<required string>
}

Refer to IAS API for parameter descriptions.

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 59 of 66

Verification-report:isvEnclaveQuoteBody:REPORTBODY:REPORTDATA contains a
SHA256 hash (first 32 bytes) of the concatenation of the decoded verificationKey and (UTF8)
extendedMeasurements values. The last 32 bytes are set to zero.

This specification assumes that Enclaves can be grouped into groups for better load balancing and
manageability. In such a case the same verification and encryption keys are used to invoke
workloads by any of the Enclaves in a pool.

If the pool includes more than one type of enclave (each having a different MRENCLAVE
value), extendedMeasurements includes a comma-separated list of hexadecimal strings,
one for each MRENCLAVE. This list is provided to the enclave as an input by the hosting
service.

The master Enclave generates verification and encryption keys

The master enclave calculates a SHA256 hash andd places it in Verification-
report:isvEnclaveQuoteBody:REPORTBODY:REPORTDATA as defined in section Intel
SGX Worker Type Data.

A master Enclave is registered in the worker registry

The master Enclave uses the verification and encryption keys to forward and securely execute
workloads, only through the enclaves on the list provided in step 1

The exact Enclave pool provisioning mechanism is outside the scope of this specification. The
MRENCLAVE value included in the proofData:Verification-report can be used by the
requester to determine what mechanism is used to operate the enclave pool.

This section defines data for worker type MPC. Refer to parameter workType in section Registering
a New Worker.

{
 "workerTypeData": {
 "workerType":<hex string>, //"MPC-" prefix
 "verificationKey": <hex string>,
 "encryptionKey": <hex string>,
 "proofDataType": <hex string>,
 "proofData": <hex string>,
 }
}

9.2.2 TEE-SGX Load Balancing and Enclave pools

9.3 MPC Worker Data

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 60 of 66

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is a hex string representing a public key used to verify data provided by the
MPC worker. This field must be included in the proofData.

encryptionKey is as a hex string representing an asymmetric public key used to encrypt data sent
to the MPC worker. This field must be included in the proofData.

proofDataType is one of the "MPC-" prefixed data types to be defined in the future.

proofData is proof data corresponding to the proofDataType. Refer to the section Implementation
Notes for more details.

This section defines data for worker types "ZK". Refer to parameter workType in section
Registering a New Worker.

<dfn>Identification and attestation payload</dfn>

{
 "workerTypeData": {
 "workerType":<hex string>, //"ZK-" prefix
 "verificationKey": <hex string>,
 "encryptionKey": <hex string>,
 "proofDataType": <hex string>,
 "proofData": <hex string>,
 }
}

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is as a hex string representing a public key used to verify proofs generated by
the ZK worker. This field must be included in the proofData.

encryptionKey is as a hex string representing an asymmetric public key used to encrypt data sent
to the ZK worker. This field must be included in the proofData.

proofDataType is one of the "ZK-" prefixed data types to be defined in future.

proofData is proof data corresponding to the proofDataType. Refer to Implementation Notes
chapter for more details.

9.4 ZK Worker Data

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 61 of 66

This section is non-normative.

Work Order Receipts are created upon each successful or unsuccessful Work Order execution.
They are created and signed by the Requester and later updated and signed by the Worker making
sure that parties involved in the transaction can use it for tracking, auditing, dispute resolution, and
fraud detection. This specification supports per Work Order Receipt as an option.

It is left to the implementation to decide whether to store Receipts on the main blockchain or
somewhere else. Similarly, when supporting high volume use-cases (e.g. an IOT use-case), it is left
to the implementation to decide if Receipt updates to the main blockchain should be batched.
Implementations may decide to keep Receipts off the main blockchain such as in a side-chain or
trusted database.

Details of a Worker Service are left for an implementation to decide. The following functions are
expected:

A Worker Service can assist in registering a Worker with either the main blockchain or an off-
chain registry.

A Worker Service can support a single Worker or a group of Workers. Workers may be
registered individually, enabling Requesters to select a particular Worker for Work Order
execution, or multiple Workers may be registered and managed collectively as a Worker Pool.
When a Requester selects a Worker Pool, the Worker Service chooses which Worker(s) in the
pool will be used to execute a particular Work Order. Requesters should be able to look up all
Workers belonging to the same Worker Service. In this specification, a Worker Pool is used
synonymously with a Worker.

A Worker is represented using a URI and an RSA and/or an ECDSA/SECP256K1 public key
set by its Worker Service on the main blockchain. A URI can represent a single Worker or
multiple individually addressable Workers, one or multiple Worker Pools, or any combination
of individually addressable Workers or Worker Pools. All Workers in a pool represented by a
single URI can share a common RSA and/or ECDSA/SECP256K1 public key set. Appropriate
pooling of Workers is left for deployments to decide. For example, pools could be based on
location of Workers, type of Workers, etc.

A Worker Service can act as a proxy for signing Ethereum transactions originating in a
Worker (e.g. the Worker Service has the Ethereum address that is used to create an Ethereum

10. Implementation Notes

10.1 Note 1: Receipts

10.2 Note 2: Worker Service

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 62 of 66

transaction that contains the updated Work Order Receipt generated by a Worker).

The same from Ethereum address (and its associated account address) can be used by the
Worker Service on behalf of all or some of its Workers. Alternatively, an individual Ethereum
address can be assigned to each Worker.

Proxy JSON APIs are for Work Order invocation by a Worker in direct mode.

If a Worker Service supports the Work Order proxy invocation mode, it should deploy at least
one Work Order Invocation Proxy smart contract, but may deploy more. The same smart
contract address can be used for submitting Work Orders to multiple Workers.

Given that a Worker Service and a Worker can have 1-to-1 or 1-to-many relationships, the term
Worker as used in this specification may imply a Worker Service as appropriate.

This specification supports different work proof data types for different types of Trusted Computes.
The following proof data types are currently defined:

TEE-Proof is an attestation produced by a TEE that the requester can use to validate that the
work order was executed inside a TEE.

ZK-Proof is the witness produced by a prover that verifiers can use to verify a claim with
zero-knowledge (for example, the correct execution of a piece of software on a specific input
set with a specific output). The proof data for non-interactive zero-knowledge proofs contains
the Witness and the Verification circuit together with the signature of the issuing trusted
compute resource.

MPC-Proof are the m outputs computed by the m compute resources each holding a share of
the original input. The reconstruction of the shared m outputs yields the complete result of the
program that was converted into a randomized logical circuit of AND and XOR gates and
used to compute each output. The order of the gates itself has been randomized and both
inputs and outputs are encrypted. After the circuit construction has been shared amongst all
counterparties, the proof data consists of the m outputs of the application of the circuit signed
by the trusted resource and distributed to all participating compute resources.

DID-Proof refers to the DID document object (DDO) as defined by the W3C. The proof data
contains the attesting DID and the information from the DDO required to verify the Worker.
This proof data type is reserved and may be defined in detail in the future versions of this
specification.

Custom Proofs must start with a tilde "~"

10.3 Note 3: Proof Data

10.4 Note 4: Security Consideration

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 63 of 66

The parameterencryptedDataEncryptionKey is defined in "Work Order Data Formats":

If the data item is sent encrypted with a one-time encryption key generated by a 3rd party that owns
this data item (it may be different from the work order requester),
encryptedDataEncryptionKey contains this encryption key in double encrypted format:

First, it is encrypted with the worker's public encryption key (e.g. by a 3rd party that owns the
data so the requester cannot see the data)

Then the result of the previous encryption above is encrypted with the key from
encryptedSessionKey(by the requester to enforce work order integrity)

The first step returns the encryption result that the data one-time encryption key is encrypted by a
worker's public key.

The second step returns the encryption result that the first step encryption result is further
encrypted by encryptedSessionKey.

The possible security issue is that since the first step encryption result refers to encryption by a
worker’s public key, this encryption result seems no longer a “secret” and can be transferred to
different requesters to proceed with step 2. However, if this first step encryption result is disclosed,
a man-in-the-middle attacker knowing a worker’s public key can then intercept the requester
payload, modify the payload parameter values, and generate the attacker’s fake
encryptedSessionKey which is then used to generate fake encryptedDataEncryptionKey
as well as fake encryptedRequestHash, and the worker is not able to detect this malicious
attack at the run time.

If a data item belongs to a 3rd party other than requester, we recommend that the implementation
should be based on one of the following two options:

Option 1: use the requesterSignature parameter in the payload: generate the requester
payload’s signature with the requester's private signing key, verified by the corresponding
public key on the worker side.

Option 2: if the requesterSignature parameter is not used, the third party should establish
a secure channel with an authorized and verified requester to transfer the first step encryption
result.

A. Additional Information

A.1 Terminology

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 64 of 66

A Requester is an entity that issues Work Orders using either a ÐApp or an application smart
contract. Requesters are identified by an Ethereum address or a DID that can be resolved to an
Ethereum address. Requester management is out of scope for this specification and will be covered
as part of EEA Requester permissioning.

A Worker is a computational resource for Work Order execution. A Worker may be identified by
an Ethereum address or a DID.

Trusted Compute is a trusted computational resource for Work Order execution. It preserves data
confidentiality, execution integrity and enforces data access policies. All Workers described in this
specification are also Trusted Compute. Trusted Compute may implement those assurances in
various ways. For example, Trusted Compute can base its trust on software-based cryptographic
security guarantees, a service’s reputation, virtualization, or a hardware-based Trusted Execution
Environment such as Intel’s SGX.

A Trusted Execution Environment (TEE) is a hardware-based technology that executes only
validated tasks, produces attested results, provides protection from malicious host software, and
enxures confidentiality of shared encrypted data.

An Enclave is an instantiation of Trusted Compute within a hardware based TEE. Certain hardware
based TEEs, including Intel SGX, allow multiple instances of Enclaves executing concurrently. For
simplification, in this specification the terms TEE and Enclave are used interchangeably.

A Worker Service is an implementation dependent middleware entity that acts as a bridge for
communications between Ethereum Blockchain and a Worker. A Worker Service may belong to an
enterprise, a cloud service provider, or an individual sharing his or her available computational
resources (subject to provisioning).

A Work Order (WO) is a unit of work submitted by a Requester to a Worker for execution. Work
Orders may include one or more inputs (e.g. messages, input parameters, state, and datasets) and
one or more outputs. Work Order inputs and outputs can be sent as part of the request or response
body (a.k.a. inline) or as links to remote storage locations. Work Order inputs and outputs are
normally sent encrypted.

The Direct Model is a Work Order execution model in which a Requester ÐApp directly invokes a
JSON RPC network API for Work Order execution in a Worker.

The Proxy Model is a Work Order execution model in which a Work Order Invocation Proxy smart
contract is used by an enterprise application smart contract to invoke Work Order execution in a
Worker.

An Attested Oracle is a device that uses Trusted Compute to attest some data (e.g. environmental
characteristics, financial values, inventory levels).

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 65 of 66

[JSON-RPC]

JavaScript Object Notation - Remote Procedure Call. JSON-RPC Working Group. URL:
http://www.jsonrpc.org/specification

[JSON-RPC-API]

Ethereum JSON-RPC API. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/JSON-RPC

[RFC2119]

Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC7519]

JSON Web Token (JWT). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://tools.ietf.org/html/rfc7519

[RFC8017]

PKCS #1: RSA Cryptography Specifications Version 2.2. K. Moriarty, Ed.; B. Kaliski; J.
Jonsson; A. Rusch. IETF. November 2016. Informational. URL:
https://tools.ietf.org/html/rfc8017

[secp256k1]

SEC2: Recommended Elliptic Curve Domain Parameters. Certicom Research. URL:
http://www.secg.org/sec2-v2.pdf

↑

B. References

B.1 Normative references

B.2 Informative references

Copyright © 2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 66 of 66

