
https://entethalliance.github.io/client-spec/spec.html

Editors:
Robert Coote (PegaSys)
Chaals Nevile (Enterprise Ethereum Alliance)
Grant Noble (PegaSys)
George Polzer (Everymans.ai)

Former editors:
Daniel Burnett (PegaSys)
David Hyland-Wood (PegaSys)

Contributors to this version:
Sanjay Bakshi (Intel), Imran Bashir (Quorum), Juan Blanco (Nethereum), Dan Burnett
(PegaSys), Cody Burns (Accenture), Jean-Charles Cabalguen (iExec), Mark Caraway
(BlockApps), Rob Dawson (PegaSys), Antony Denyer (Web3Labs), Sara Feenan
(Clearmatics), Andreas Freund (Consensys), David Izzo (DTCC), Arash Mahboubi
(PegaSys), George Ornbo (Clearmatics), Fernando Paris (ioBuilders), Yaz Khoury (ETC
Cooperative), Julien Marchand (PegaSys), Madeline Murray (PegaSys), Niraj Pore
(Fnality), Yorke Rhodes III (Microsoft), Lucas Saldanha (PegaSys), Roberto Saltini
(PegaSys), Satpal Sandhu (Quorum), Przemek Siemion (Santander), Bob Summerwill (ETC
Cooperative), Conor Svensson (Web3Labs), Sai Murali Krishna V. (Quorum), John Whelan
(Santander), Eugene Yarmosh (Intel), Jim Zhang (Kaleido), Lei Zhang (iExec), Weijia
Zhang (Wanchain)

Copyright © 2018-2020 Enterprise Ethereum Alliance Inc.. For licensing conditions and disclaimer of warranty, please
see the terms of the Legal Notice.

This document, the Enterprise Ethereum Alliance Client Specification, defines the
implementation requirements for Enterprise Ethereum clients, including the interfaces to
external-facing components of Enterprise Ethereum and how they are intended to be used. Its
primary intended audience is developers of Enterprise Ethereum clients

Enterprise Ethereum
Alliance Client Specification
Version 5, 29 May 2020

Latest editor's draft:

Abstract

file:///Users/chaals/Documents/GitHub/client-spec/docs/release-clientspec.html
https://entethalliance.github.io/client-spec/spec.html
mailto:robert.coote@consensys.net
mailto:chaals@entethalliance.org
mailto:grant.noble@consensys.net
mailto:gpolzer@everymans.ai
https://pegasys.tech/
https://pegasys.tech/
https://entethalliance.org/

1.
1.1

2.
2.1
2.2

3.
3.1

This section describes the status of this document at the time of its publication. Newer documents
may supersede this document.

This is version 5 of the Enterprise Ethereum Alliance Client Specification, approved by the EEA
Board as a formal publication of the EEA as a replacement for version 4. Changes made since
version 4 of the Specification, released on 8 October 2019, have been agreed by the Enterprise
Ethereum Alliance (EEA) Technical Specification Working Group (TSWG), who have now
agreed to request publication.

Although predicting the future is known to be difficult, as well as ongoing quality enhancement,
future work on this Specification is expected to include the following aspects:

Private transaction implementation

Agreement on a [Byzantine-Fault-Tolerant] consensus algorithm

Cross-chain interoperability

Tracking developments for Ethereum 1.x and Ethereum 2.0

The group is also expecting to hear about further implementation experience, that could
potentially lead to proposed modifications. This particularly applies to experimental sections of
the specification:

The object syntax for recording changes to maxCodeSize

Asynchronous methods for private transactions

Please send any comments to the EEA Technical Steering Committee at
https://entethalliance.org/contact/.

Introduction
Why Produce a Client Specification?

Conformance
Experimental Requirements
Requirement Categorization

Security Considerations
Callback URL Sanitization

Status of This Document

Table of Contents

https://entethalliance.org/contact/

3.2
3.3
3.4
3.5
3.6

4.

5.
5.1
5.2
5.3
5.3.1

6.
6.1
6.2
6.3
6.3.1
6.3.2
6.3.2.1

6.3.2.1.1

6.3.2.1.2

6.3.2.2

6.3.2.2.1

6.3.2.2.2

6.3.3
6.3.3.1

6.3.3.2

6.3.3.3

6.3.3.3.1

6.3.3.3.2

6.3.3.3.3

6.3.3.3.4

6.3.3.4

6.3.3.4.1

6.3.3.4.2

6.3.3.4.3

6.3.3.4.4

6.3.4

7.

Attacks on Enterprise Ethereum
Positive Security Design Patterns
Handling of Sensitive Data
Security of Client Implementations
Anti-spam

Enterprise Ethereum Architecture

Application Layer
ÐApps Sublayer
Infrastructure Contracts and Standards Sublayer
Smart Contract Tools Sublayer

The maxCodeSize parameter

Tooling Layer
Credential Management Sublayer
Integration and Deployment Tools Sublayer
Client Interfaces and APIs Sublayer

Compatibility with the Core Ethereum JSON-RPC API
Extensions to the JSON-RPC API

Synchronous Private Transaction Methods
eea_sendTransaction

eea_sendRawTransaction

Asynchronous Private Transaction Methods
eea_sendTransactionAsync

eea_sendRawTransactionAsync

Permissioning Smart Contract
Permissioning Enforcement

Permissioning Management

Node Permissioning
Node Permissioning Functions

Node Permissions

Client Implementation

Chain Initialization

Account Permissioning
Account Permissioning Function

Client Implementation

Contract Implementation

Chain Initialization

Inter-chain

Enterprise 3 P's Layer

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2

8.
8.1
8.2
8.2.1
8.3

9.
9.1

10.

11.

12.

A.
A.1
A.2
A.3
A.4
A.5
A.5.1
A.5.2
A.5.3
A.6

B.
B.1
B.2

Privacy Sublayer
On-chain Privacy
Off-chain Privacy (Trusted Computing)
Privacy Groups
Private Transactions

Performance Sublayer
On-chain (Layer 1 and Layer 2) Scaling
Off-chain (Layer 2 Compute)

Permissioning Sublayer
Nodes
Ethereum Accounts

Core Blockchain Layer
Storage and Ledger Sublayer
Execution Sublayer

Finality
Consensus Sublayer

Network Layer
Network Protocol Sublayer

Cross-client Compatibility

Cross-chain Interoperability

Synchronization and Disaster Recovery

Additional Information
Defined Terms
Defined Events, Functions, and Network Configuration Parameters
Summary of Requirements
Acknowledgments
Changes

New requirements
Changed Requirements
Removed requirements

Legal Notice

References
Normative references
Informative references

For licensing conditions and disclaimer of warranty, please see the terms of the Legal Notice.

This section is non-normative.

This document, the Enterprise Ethereum Alliance Client Specification, defines the
implementation requirements for Enterprise Ethereum clients, including the interfaces to
external-facing components of Enterprise Ethereum and how they are intended to be used. A
partial list of use cases [USECASES] this specification attempts to address is available as a work
in progress.

A companion document, the Enterprise Ethereum Alliance Permissioned Blockchains
specification [EEA-chains] defines requirements for Enterprise Ethereum blockchains to ensure
that clients that conform to this specification can work interopably on blockchains that meet the
requirements defined in that document.

For the purpose of this Specification:

Public EthereumPublic Ethereum (Ethereum) is the public blockchain-based distributed computing
platform featuring smart contract (programming) functionality, as defined by the [Ethereum-
Yellow-Paper], [EIPs], and associated specifications.

Ethereum MainNetEthereum MainNet (MainNet) is the public Ethereum blockchain whose chainid and
network ID are both 1.

Enterprise EthereumEnterprise Ethereum is the set of enterprise-focused extensions to public Ethereum
defined in this Specification. These extensions provide the ability to perform private
transactions and enforce permissioning for Ethereum blockchains that use them. Such
blockchains are known as Enterprise Ethereum blockchainsEnterprise Ethereum blockchains.

An Enterprise Ethereum clientEnterprise Ethereum client (a client) is the software that implements Enterprise
Ethereum, and is used to run nodes on an Enterprise Ethereum blockchain.

A nodenode is an instance of an Enterprise Ethereum client running on an Enterprise Ethereum
blockchain.

NOTE

Multiple clients might run on an individual device, or a client might run on a cloud service.

1. Introduction

1.1 Why Produce a Client Specification?

https://chainid.network/

With a growing number of vendors developing Enterprise Ethereum clients, meeting the
requirements outlined in this Client Specification ensures different clients can communicate with
each other and interoperateinteroperate reliably on a given Enterprise Ethereum blockchain.

For ÐApp developers, for example, a Client Specification ensures clients provide a set of
identical interfaces so that ÐApps will work on all conforming clients. This enables an
ecosystem where users can change the software they use to interact with a running blockchain,
instead of being forced to rely on a single vendor to provide support.

From the beginning, this approach has underpinned the development of Ethereum and it meets a
key need for blockchain use in many enterprise settings.

Client diversity also provides a natural mechanism to help verify that the protocol specification is
unambiguous because interoperability errors revealed in development highlight parts of the
protocol that different engineering teams interpret in different ways.

Finally, standards-based interoperability allows users to leverage the widespread knowledge of
Ethereum in the blockchain development community to minimize the learning curve for working
with Enterprise Ethereum. This reduces risk when deploying an Enterprise Ethereum blockchain.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, SHALL, SHOULD, and SHOULD NOT in this
document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only
when, they appear in all capitals, as shown here.

This Specification includes requirements and Application Programming Interfaces (APIs) that are
described as experimental. ExperimentalExperimental means that a requirement or API is in early stages of
development and might change as feedback is incorporated. Implementors are encouraged to
implement these experimental requirements, with the knowledge that requirements in future
versions of the Specification are not guaranteed to be compatible with the current version. Please
send comments and feedback on experimental portions of this Specification to the EEA Technical
Steering Committee at https://entethalliance.org/contact/.

2. Conformance

2.1 Experimental Requirements

https://tools.ietf.org/html/bcp14
https://entethalliance.org/contact/

All requirements in this Specification are categorized as either:

Protocol requirementsProtocol requirements, denoted by [P] prefixed to the requirement ID.

Protocol requirements are requirements where the desired properties and correctness of the
system can be jeopardized unless all clients implement the requirement correctly.

Client requirementsClient requirements, denoted by [C] prefixed to the requirement ID.

Client requirements do not impact global system behavior, but if not implemented correctly
in a client, that client might not function correctly, or to a desirable level, in an Enterprise
Ethereum blockchain.

This section is non-normative.

Security of information systems is a major field of work. Enterprise Ethereum software
development shares with all software development the need to consider security issues and the
obligation to update implementations in line with new information and techniques to protect its
users and the ecosystem in which it operates.

However, some aspects of Ethereum in general, and Enterprise Ethereum specifically, are
especially important in an organizational environment.

2.2 Requirement Categorization

EXAMPLE 1: Requirement Categorization

[P] SMRT-030: Enterprise Ethereum clients MUST support smart contracts of at least 24,576
bytes in size.

Requirement SMRT-030 is a protocol requirement. Running a client that does not implement
this requirement on an Enterprise Ethereum blockchain risks causing an error in the
functioning of the blockchain.

[C] JRPC-050: Enterprise Ethereum clients MUST implement the [JSON-RPC-PUB-SUB]
API.

Requirement JRPC-050 is a client requirement, which if not implemented correctly, does not
disrupt the correct functioning of an Enterprise Ethereum blockchain.

3. Security Considerations

The asynchronous JSON-RPC methods eea_sendTransactionAsync and
eea_sendRawTransactionAsync utilize a URL provided by the user at call time to inform the
user of the completion of the asynchronous operation. Attackers can use these URLs to cause the
node server to invoke resources present on the private network for the node that the attacker
would not normally have access to or to cause the node to spam the callback URL. Enterprise
Ethereum clients need to provide appropriate URL sanitization and restrictions, such as
whitelisting and request throttling, to prevent such vulnerabilities from being exploited in the
course of executing asynchronous operations.

Modeling attacks against a node helps identify and prioritize the necessary security
countermeasures to implement. Some attack categories to consider include:

Attacks on unauthenticated [JSON-RPC] interfaces through malicious JavaScript in the
browser using DNS rebinding.

Eclipse attacks (attacks targeting specific nodes in a decentralized network) that attempt to
exhaust client network resources or fool its node-discovery protocol.

Targeted exploitation of consensus bugs in EVM implementations.

Malicious code contributions to open-source repositories.

All varieties of social engineering attacks.

Complex interfaces increase security risk by making user error more likely. For example,
entering Ethereum addresses by hand is prone to errors. Therefore, implementations can reduce
the risk by providing user-friendly interfaces, ensuring users correctly select an opaque identifier
using tools, like a contact manager.

GasGas (defined in the [Ethereum-Yellow-Paper]) is a virtual pricing mechanism for transactions
and smart contracts that is implemented by Ethereum to protect against Denial of Service attacks
and resource-consumption attacks by compromised, malfunctioning, or malicious nodes.
Enterprise Ethereum provides additional tools to reduce security risks, such as more granular
permissions for actions in a network.

Permissioning plays some role in mitigating network-level attacks (like the 51% attack), but it is
important to carefully consider which risks are of most concern to a client implementation versus

3.1 Callback URL Sanitization

3.2 Attacks on Enterprise Ethereum

3.3 Positive Security Design Patterns

those that are better mitigated by updates to the Ethereum consensus protocol design.

The implications of private data storage are also important to consider, and motivate several
requirements in this Specification.

The long-term persistence of encrypted data on any public platform (such as Ethereum) exposes
it to eventual decryption by brute-force attack, accelerated by the inevitable periodic advances in
cryptanalysis. A future shift to post-quantum cryptography is a current concern, but will not
likely be the last advancement in the field. Assuming no encryption scheme endures for eternity,
a degree of protection is required to reasonably exceed the lifetime of the data's sensitivity.

Besides user-generated data, a client is also responsible for managing and protecting private
keys. Encrypting private keys with a passphrase or other authentication credential before storage
helps protect them from disclosure. It is also important not to disclose sensitive data when
recording events to a log file.

There are several specific functionality areas that are more prone to security issues arising from
implementation bugs. The following areas deserve a greater focus during the design and the
security assessment of an Enterprise Ethereum client:

Peer-to-peer protocol implementation

Object deserialization routines

Ethereum Virtual Machine (EVM) implementation

Key pair generation.

The peer-to-peer protocol used for communication among nodes in Ethereum is a client's primary
vector for exposure to untrusted input. In any software, the program logic that handles untrusted
inputs is the primary focus area for implementing secure data handling.

Object serialization and deserialization is commonly part of the underlying implementation of the
P2P protocol, but also a source of complexity that, historically, is prone to security vulnerabilities
across many implementations and many programming languages. Selecting a deserializer that
offers strict control of data typing can help mitigate the risk.

EVM implementation correctness is an especially important security consideration for clients.
Unless EVMs behave identically for all possibilities of input, there is a serious risk of a hard fork

3.4 Handling of Sensitive Data

3.5 Security of Client Implementations

caused by an input that elicits the differences in behavior across clients. EVM implementations
are also exposed to denial-of-service attempts by maliciously constructed smart contracts, and
the even more serious risk of an exploitable remote-code-execution vulnerability.

A hard forkhard fork is a permanent divergence from the previous version of a blockchain. Nodes using
older network configuration are no longer able to participate fully in the Enterprise Ethereum
blockchain after the hard fork block.

A hard fork blockhard fork block is the block from which a hard fork occurred.

The Ethereum specification defines many of the technical aspects of public/private key pair
format and cryptographic algorithm choice, but a client implementation is still responsible for
properly generating these keys using a well-reviewed cryptographic library. Specifically, a client
implementation needs a properly seeded, cryptographically secure, pseudo-random number
generator (PRNG) during the keypair generation step. An insecure PRNG is not generally
apparent by merely observing its outputs, but enables attackers to break the encryption and reveal
users' sensitive data.

This section refers to mechanisms to prevent the Enterprise Ethereum blockchain being degraded
with a flood of intentional or unintentional messages (either malicious, buggy, or uncontrolled).
This might be realized through interfacing with an external security manager, as described in
Section 6.2 Integration and Deployment Tools Sublayer, or implemented by the client.

This section is non-normative.

3.6 Anti-spam

EXAMPLE 2: Anti-spam Mechanisms

Anti-spam mechanisms might include:

Stopping parties attempting to issue transactions above a threshold volume.

Providing a mechanism to enforce a cost for gas, so transacting parties have to acquire
and pay for (or destruct) private ether to transact.

Having a dynamic cost of gas based on activity intensity.

4. Enterprise Ethereum Architecture

The following two diagrams show the relationship between Enterprise Ethereum components
that can be part of any Enterprise Ethereum client implementation. The first is a stack
representation of the architecture showing a library of interfaces, while the second is a more
traditional style architecture diagram showing a representative architecture.

ENTERPRISE ETHEREUM ARCHITECTURE STACK
APPLICATION

DAPPS APPLICATIONS EXPLORERS, MONITORING & BUSINESS INTELLIGENCE

INFRA CONTRACTS &
STANDARDS

TOKEN STANDARDS IDENTITY SERVICES ETHEREUM NAME SERVICE PERMISSIONING CONTRACTS

SMART CONTRACT
TOOLS SMART CONTRACT LANGUAGES DEVELOPER TOOLS SECURITY ANALYSIS AND AUDITS FORMAL VERIFICATION

TOOLING
CREDENTIAL
MANAGEMENT WALLETS KEY MANAGEMENT HARDWARE SECURITY MANAGER

INTEGRATION &
DEPLOYMENT TOOLS INTEGRATION LIBRARIES ENTERPRISE MANAGEMENT SYSTEMS

CLIENT INTERFACES /
APIs JSON-RPC INTER-CHAIN

ENTERPRISE 3 P's

PRIVACY ON-CHAIN OFF-CHAIN / TRUSTED COMPUTE PRIVATE TRANSACTIONS

PERFORMANCE ON-CHAIN OPTIMIZATION OFF-CHAIN COMPUTING OFF-CHAIN / TRUSTED COMPUTE

PERMISSIONING ORGANIZATION REGISTRY CLIENT WHITELIST PERMISSION CHECKS

CORE BLOCKCHAIN

STORAGE/LEDGER ON-CHAIN PUBLIC STATE ON-CHAIN STORAGE OFF-CHAIN STORAGE ON-CHAIN PRIVATE STATE

EXECUTION EVM SYNC PRECOMPILED CONTRACTS TRUSTED COMPUTE

CONSENSUS PROOF OF WORK PROOF OF AUTHORITY BFT ALGORITHMS

NETWORK

NETWORK PROTOCOL DEVP2P RESTRICTED PRIVATE TRANSACTION SHARING

LEGEND Yellow Paper Public Ethereum Application Layer Enterprise Ethereum

All Yellow Paper, Public Ethereum, and Application Layer components may be extended for Enterprise Ethereum as required.
© 2018-2020 Enterprise Ethereum Alliance Inc. All rights reserved.

Figure 1 Enterprise Ethereum Architecture Stack

Figure 2 Representative Enterprise Ethereum High-level Architecture

The architecture stack for Enterprise Ethereum consists of five layers:

Application

Tooling

Enterprise 3 P's

Core Blockchain

Network.

These layers are described in the following sections.

5. Application Layer

The Application layer exists, often fully or partially outside of a client, where higher-level
services are provided. For example, Ethereum Name Service (ENS), node monitors, blockchain
state visualizations and explorers, self-sovereign and other identity schemes, wallets, and any
other applications of the ecosystem envisaged.

WalletsWallets are software applications used to store an individual’s credentials (cryptographic private
keys), which are associated with the state of that user’s Ethereum account.

Wallets can interface with Enterprise Ethereum using the Extended RPC API, as shown in Figure
2. A wallet can also interface directly with the enclave of a private transaction manager, or
interface with public Ethereum.

A private transaction managerprivate transaction manager is a subsystem of an Enterprise Ethereum system for
implementing privacy and permissioning.

This section is non-normative.

Decentralized Applications, or ÐAppsÐApps, are software applications running on a decentralized
peer-to-peer network, often a blockchain. A ÐApp might include a user interface running on
another (centralized or decentralized) system. ÐApps run on top of Ethereum. ÐApps running on
an Enterprise Ethereum blockchain can use the extensions to the Ethereum JSON-RPC API that
are defined in this Specification.

Also at the ÐApps sublayer are blockchain explorers, tools to monitor the blockchain, and other
business intelligence tools.

This section is non-normative.

Some important tools for managing a blockchain, are built at the Application layer. These
components together make up the Infrastructure Contracts and Standards sublayer.

Permissioning contractsPermissioning contracts determine whether nodes and accounts can access, or perform
specific actions on, an Enterprise Ethereum blockchain, according to the needs of the blockchain.
These permissioning contracts can implement Role-based access control (RBAC) [WP-RBAC]
or Attribute-based access control (ABAC) [WP-ABAC], as well as simpler permissioning
models, as described in the Permissioning Management Examples section of the Implementation
Guide [EEA-implementation-guide].

5.1 ÐApps Sublayer

5.2 Infrastructure Contracts and Standards Sublayer

Token standards provide common interfaces and methods along with best practices. These token
standards include [ERC-20], [ERC-223], [ERC-621], [ERC-721], and [ERC-827].

The Ethereum Name ServiceEthereum Name Service (ENS) provides a secure and decentralized mapping from
simple, human-readable names to Ethereum addresses for resources both on and off the
blockchain.

Enterprise Ethereum inherits the smart contract tools used by public Ethereum. These tools
include smart contract languages and associated developer tools, such as parsers, compilers, and
debuggers, as well as methods used for security analysis and formal verification of smart
contracts.

Enterprise Ethereum implementations enable use of these tools and methods through
implementation of the Execution sublayer, as described in Section 8.2 Execution Sublayer.

[P] SMRT-030: Enterprise Ethereum clients MUST support smart contracts of at least 24,576
bytes in size.

[P] SMRT-040: Enterprise Ethereum clients MUST read and enforce a size limit for transactions
that deploy smart contracts from the maxCodeSize parameter in the network configuration,
specified as a number of kilobytes as defined in the section below.

[P] SMRT-060: Enterprise Ethereum clients MUST read and enforce a size limit for transactions
that deploy smart contracts from the maxCodeSize parameter in the network configuration,
specified as a javascript object as defined in the section below.

See also [CONFIG-010] in Enterprise Ethereum Alliance Permissioned blockchains
specification [EEA-chains].

This section is experimental

The maxCodeSize parameter in the network configuration has a value that is either a positive
integer or a Javascript object.

If the value is an integer, it specifies the maximum size , in kilobytes, of a smart contract for
deployment.

It the value is a Javascript object, it is interpreted as a set of pairs of integers:

5.3 Smart Contract Tools Sublayer

5.3.1 The maxCodeSize parameter

limit

file:///Users/chaals/Documents/GitHub/client-spec/docs/sec-maxcodesize
file:///Users/chaals/Documents/GitHub/client-spec/docs/sec-maxcodesize
file:///Users/chaals/Documents/GitHub/client-spec/docs/chainspec.html#req-config-010

The first number in the pair specifies the maximum size , in kilobytes, of a smart
contract for deployment.

The second number is the from which the associated size limit applies.

Any transaction to deploy a smart contract larger than is an invalid transaction.

A negative value of means the blockchain does not impose any limit.

A missing or non-integer value of means the client imposes its implementation-dependent
default limit, that MUST be at least 24 kilobytes (see SMRT-030).

A negative value for the is an error, and the client MUST NOT apply the associated
limit.

A missing value, or non-integer value, or value of that is less than or equal to the
preceding value is an error, and the client MUST NOT apply the associated limit.

The Tooling layer contains the APIs used to communicate with clients. The Ethereum JSON-Ethereum JSON-
RPC APIRPC API, implemented by public Ethereum, is the primary API to submit transactions for
execution, deploy smart contracts, and to allow ÐApps and wallets to interact with the platform.
The [JSON-RPC] remote procedure call protocol and format is used for the JSON-RPC API
implementation. Other APIs are allowed, including those intended for inter-blockchain
operations and to call external services, such as trusted oracles.

Integration librariesIntegration libraries, such as [web3j], [web3.js], and [Nethereum], are software libraries used
to implement APIs with different language bindings (like the Ethereum JSON-RPC API) for
interacting with Ethereum nodes.

Enterprise Ethereum implementations can restrict operations based on permissioning and
authentication schemes.

The Tooling layer also provides support for the compilation, and possibly formal verification, of
smart contracts through the use of parsers and compilers for one or more smart contract
languages.

Smart contract languagesSmart contract languages are the programming languages, such as [Solidity] and [LLL], used
to create smart contracts. For each language, tools can perform tasks such as compiling to EVM
bytecode, static security checking, or formal verification.

limit

block height

limit

limit

limit

block height

block height

6. Tooling Layer

Formal verificationFormal verification is the mathematical verification of the logical correctness of a smart
contract designed to run in the EVM.

This section is non-normative.

Credentials, in the context of Enterprise Ethereum blockchains, refer to an individual’s
cryptographic private keys, which are associated with that user’s Ethereum account. Enterprise
Ethereum clients can choose to offer local handling of user credentials, such as key management
systems and wallets. Such facilities might also be implemented outside the scope of a client.

This section is non-normative.

Many software systems integrate with enterprise management systems using common APIs,
libraries, and techniques, as shown in Figure 3.

Figure 3 Management Interfaces

As well as deployment and configuration capabilities, Enterprise Ethereum clients can offer
functionality such as software fault reporting, performance management, security management,
integration with other enterprise software, and historical analysis tools.

These are not requirements of this Specification, instead they are optional features to distinguish
between different Enterprise Ethereum clients.

6.1 Credential Management Sublayer

6.2 Integration and Deployment Tools Sublayer

As part of the Client Interfaces and APIs sublayer, [JSON-RPC] is a stateless, light-weight
remote procedure call (RPC) protocol using [JSON] as its data format. The [JSON-RPC]
specification defines several data structures and the rules around their processing.

An Ethereum JSON-RPC API is used to communicate between ÐApps and nodes.

[P] JRPC-010: Enterprise Ethereum clients MUST provide support for the following Ethereum
JSON-RPC API methods:

net_version

net_peerCount

net_listening

eth_protocolVersion

eth_syncing

eth_coinbase

eth_hashrate

eth_gasPrice

eth_accounts

eth_blockNumber

eth_getBalance

eth_getStorageAt

eth_getTransactionCount

eth_getBlockTransactionCountByHash

eth_getBlockTransactionCountByNumber

eth_getCode

eth_sendRawTransaction

eth_call

eth_estimateGas

eth_getBlockByHash

eth_getBlockByNumber

6.3 Client Interfaces and APIs Sublayer

6.3.1 Compatibility with the Core Ethereum JSON-RPC API

eth_getTransactionByHash

eth_getTransactionByBlockHashAndIndex

eth_getTransactionByBlockNumberAndIndex

eth_getTransactionReceipt

eth_getUncleByBlockHashAndIndex

eth_getUncleByBlockNumberAndIndex

eth_getLogs.

[P] JRPC-007: Enterprise Ethereum clients SHOULD implement [JSON-RPC-API] methods to
be backward compatible with the definitions given in version e8e0771 of the Ethereum JSON-
RPC API reference [JSON-RPC-API-e8e0771], unless breaking changes were made and widely
implemented for the health of the ecosystem. For example, to fix a major security or privacy
problem.

[C] JRPC-015: Enterprise Ethereum clients MUST provide the capability to accept and respond
to JSON-RPC method calls over a websocket interface.

[C] JRPC-040: Enterprise Ethereum clients MUST provide an implementation of the
debug_traceTransaction method [debug-traceTransaction] from the Go Ethereum
Management API.

[C] JRPC-050: Enterprise Ethereum clients MUST implement the [JSON-RPC-PUB-SUB] API.

[P] JRPC-070: Enterprise Ethereum clients implementing additional nonstandard subscription
types for the [JSON-RPC-PUB-SUB] API MUST prefix their subscription type names with a
namespace prefix other than eea_.

[P] JRPC-080: The [JSON-RPC] method name prefix eea_ MUST be reserved for future use for
RPC methods specific to the EEA.

[P] JRPC-020: Enterprise Ethereum clients MUST implement at least one of the following
extensions to create private transaction types defined in the Section 7.1.4 Private Transactions:

eea_sendTransaction, or

eea_sendRawTransaction.

[P] JRPC-025: Enterprise Ethereum clients MAY implement the following experimental
extensions to create private transaction types defined in the Section 7.1.4 Private Transactions:

6.3.2 Extensions to the JSON-RPC API

eea_sendTransactionAsync and

eea_sendRawTransactionAsync.

[P] JRPC-030: The eea_sendTransactionAsync, eea_sendTransaction,
eea_sendRawTransactionAsync, and eea_sendRawTransaction methods MUST respond
with a [JSON-RPC] error response when an unimplemented private transaction type is requested.
The error response MUST have the -50100 and the Unimplemented private
transaction type.

Example response

{
 "jsonrpc": "2.0",
 "id": 1,
 "error": {
 "code": -50100,
 "message": "Unimplemented private transaction type"
 }
}

NOTE

As in the public Ethereum [JSON-RPC-API], the two key datatypes for these
eea_send*Transaction* calls, which are passed hex encoded, are unformatted data byte
arrays (DATA) and quantities (QUANTITY). When encoding unformatted data, encode as
hex, prefix with "0x", and use two hex digits per byte. When encoding quantities (integers
and numbers), encode as hex and prefix with "0x". When encoding the privateFrom,
privateFor, and privacyGroupId DATA fields, encode them as base64.

A call to eea_sendTransaction creates a private transaction, signs it, generates the transaction
hash and submits it to the transaction pool, and returns the transaction hash.

Parameters

The transaction object containing:

code message

6.3.2.1 Synchronous Private Transaction Methods

6.3.2.1.1 EEA_SENDTRANSACTION

from DATA, 20 bytes – The address of the account sending the transaction.

to DATA, 20 bytes – Optional when creating a new contract. The address of the account
receiving the transaction.

gas QUANTITY – Optional. The gas, as an integer, provided for the transaction.

gasPrice QUANTITY – Optional. The gas price, as an integer.

value QUANTITY – Optional. The value, as an integer, if present must be set to 0.

data DATA – Transaction data (compiled smart contract code or encoded method data).

nonce QUANTITY – Optional. A nonce value, as an integer. This allows you to overwrite
your own pending transactions that use the same nonce.

privateFrom DATA, 32 bytes – Optional. The public key of the sender of this private
transaction. If this parameter is not supplied, the node could supply a default for
privateFrom. If this parameter is not supplied and the node is unable to supply a default,
the transaction fails.

privateFor DATA – An array of the public keys of the intended recipients of this private
transaction. Mutually exclusive with the privacyGroupId parameter. If both privateFor
and privacyGroupId parameters are provided, an error response is generated.

privacyGroupId DATA, 32 bytes – The privacy group identifier for the group of intended
recipients of this private transaction. If a client does not support this parameter, it should
return a privacyGroupId not supported error response. The privacyGroupId and
privateFor parameters are mutually exclusive. If both the privacyGroupId and
privateFor parameters are provided, an error response is generated.

restriction STRING – If restricted, the transaction is a restricted private transaction.
If unrestricted, the transaction is an unrestricted private transaction. For more
information, see Section 7.1.4 Private Transactions.

Returns

DATA, 32 Bytes – The transaction hash, or the zero hash if the transaction is not yet available.

If creating a contract, use eth_getTransactionReceipt to retrieve the contract address after
the transaction is finalized.

Request Format

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendTransaction","params": [{
"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"gas": "0x76c0",

"gasPrice": "0x9184e72a000",
"data":
"0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb970
870f072445675",
"privateFrom": "negmDcN2P4ODpqn/6WkJ02zT/0w0bjhGpkZ8UP6vARk=",
"privateFor": ["g59BmTeJIn7HIcnq8VQWgyh/pDbvbt2eyP0Ii60aDDw="],
"restriction": "restricted"}],
"id":1}'
Or alternatively, when a privacyGroupId is provided instead of privateFo
r:
"privacyGroupId": "Vbj70zF+G2V/8XoyZzwqawfcQ+r9BkXoLQOqkQideys=",

Response Format

{
"id":1,
"jsonrpc": "2.0",
"result": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d152
7331"
}

A call to eea_sendRawTransaction creates a private transaction, which has already been
signed, generates the transaction hash and submits it to the transaction pool, and returns the
transaction hash.

The signed transaction passed as an input parameter is expected to include the privateFrom,
privateFor, privacyGroupId, and restriction fields, as specified in the Parameters section
of 6.3.2.1.1 eea_sendTransaction.

Parameters

The transaction object containing:

data DATA – The signed transaction data.

params: ["0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f07244567505
8bb8eb970870f072445675"]

Returns

DATA, 32 Bytes – The transaction hash, or the zero hash if the transaction is not yet available.

6.3.2.1.2 EEA_SENDRAWTRANSACTION

If creating a contract, use eth_getTransactionReceipt to retrieve the contract address after
the transaction is finalized.

Request Format

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendRawTransaction","params": [{see abov
e}],
"id":1}'

Response Format

{
"id":1,
"jsonrpc": "2.0",
"result": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d152
7331"
}

This section is experimental.

At the time of publication, the asynchronous methods to create private transactions are only
known to be implemented by the Quorum client. The Working Groups is seeking feedback from
developers about these asynchronous methods:

Are they useful?

Is this the appropriate layer to be determining whether to make requests asynchronous?

Is the API comfortable to use, or should we consider changes such as using a parameter
instead of a different method name?

Please provide feedback through the EEA Technical Steering Committee at
https://entethalliance.org/contact/.

A call to eea_sendTransactionAsync creates a private transaction, signs it, submits it to the
transaction pool, and returns immediately.

6.3.2.2 Asynchronous Private Transaction Methods

6.3.2.2.1 EEA_SENDTRANSACTIONASYNC

https://entethalliance.org/contact/

Using this method allows sending many transactions without waiting for recipient confirmation.

Parameters

The transaction object for this call contains:

from DATA, 20 bytes – The address of the account sending the transaction.

to DATA, 20 bytes – The address of the account receiving the transaction.

gas QUANTITY – Optional. The gas, as an integer, provided for the transaction.

gasPrice QUANTITY – Optional. The gas price, as an integer.

value QUANTITY – Optional. The value, as an integer, if present must be set to 0.

data DATA – Transaction data (compiled smart contract code or encoded method data).

nonce QUANTITY – Optional. A nonce value, as an integer. This allows you to overwrite
your own pending transactions that use the same nonce.

privateFrom DATA, 32 bytes – Optional. The public key of the sender of this private
transaction. If this parameter is not supplied, the node could supply a default for
privateFrom. If this parameter is not supplied and the node is unable to supply a default,
the transaction fails.

privateFor DATA – An array of the public keys of the intended recipients of this private
transaction. Mutually exclusive with the privacyGroupId parameter. If both the
privateFor and privacyGroupId parameters are provided, an error response is
generated.

privacyGroupId DATA, 32 bytes – The privacy group identifier for the group of intended
recipients of this private transaction. If a client does not support this parameter, it should
return a privacyGroupId not supported error response. The privacyGroupId and
privateFor parameters are mutually exclusive. If both the privacyGroupId and
privateFor parameters are provided, an error response is generated.

restriction STRING – If restricted, the transaction is a restricted private transaction.
If unrestricted, the transaction is an unrestricted private transaction. For more
information, see Section 7.1.4 Private Transactions.

callbackUrl STRING – The URL to post the results of the transaction to.

Callback Body

The callback object for this call contains:

txHash DATA, 32 bytes – The transaction hash (if successful).

txIndex QUANTITY – The index position, as an integer, of the transaction in the block.

blockHash DATA, 32 Bytes – The hash of the block this transaction was in.

blockNumber QUANTITY – The number of the block, as an integer, this transaction was
in.

from DATA, 20 Bytes – The public key of the sender of this private transaction.

to DATA, 20 Bytes – The account address of the receiver. null if a contract creation
transaction.

cumulativeGasUsed QUANTITY – The total amount of gas used when this transaction
was executed in the block.

gasUsed QUANTITY – The amount of gas used by this specific transaction.

contractAddress DATA, 20 Bytes – The contract address created, if a contract creation
transaction, otherwise null.

logs Array – An array of log objects generated by this transaction.

logsBloom DATA, 256 Bytes – A bloom filter for light clients to quickly retrieve related
logs.

error STRING – Optional. Includes an error message describing what went wrong.

id DATA – Optional. The ID of the request corresponding to this transaction, as provided in
the initial [JSON-RPC] call.

Also returned is either:

root DATA, 32 bytes – The post-transaction stateroot (pre-Byzantium).

status QUANTITY – The return status, either 1 (success) or 0 (failure).

Request Format

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendTransactionAsync","params":[{
"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"gas": "0x76c0",
"gasPrice": "0x9184e72a000",
"data":"0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058b
b8eb970870f072445675",
"privateFrom": "negmDcN2P4ODpqn/6WkJ02zT/0w0bjhGpkZ8UP6vARk=",
"privateFor": ["g59BmTeJIn7HIcnq8VQWgyh/pDbvbt2eyP0Ii60aDDw="],
"callbackUrl": "http://myserver/id=1",
"restriction": "restricted"}],
"id":1}'

Or alternatively, when a privacyGroupId is provided instead of privateFo
r:
"privacyGroupId": "Vbj70zF+G2V/8XoyZzwqawfcQ+r9BkXoLQOqkQideys=",

Response Format

{
"id":1,
"jsonrpc": "2.0"
}

Callback Format

{
"txHash":
"0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331"
"txIndex": "0x1", // 1
"blockNumber": "0xb", // 11
"blockHash": "0xc6ef2fc5426d6ad6fd9e2a26abeab0aa2411b7ab17f30a99d3cb96ae
d1d1055b",
"cumulativeGasUsed": "0x33bc", // 13244
"gasUsed": "0x4dc", // 1244
"contractAddress": "0xb60e8dd61c5d32be8058bb8eb970870f07233155", // or n
ull, if none was created
"logs": "[{
// logs as returned by getFilterLogs, etc.
}, ...]",
"logsBloom": "0x00...0", // 256 byte bloom filter
"status": "0x1"
}

A call to eea_sendRawTransactionAsync creates a private transaction that is already signed,
submits it to the transaction pool, and returns immediately.

Using this method allows sending many transactions without waiting for recipient confirmation.

The signed transaction passed as an input parameter is expected to include the privateFrom,
privateFor, privacyGroupId, and restriction fields, as specified in the Parameters section
of 6.3.2.2.1 eea_sendTransactionAsync. It is also expected to include the callbackUrl field.

Parameters

6.3.2.2.2 EEA_SENDRAWTRANSACTIONASYNC

The transaction object containing:

data DATA – The signed transaction data.

params: ["0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f07244567505
8bb8eb970870f072445675"]

Callback Body

The callback object for this call contains:

txHash DATA, 32 bytes – The transaction hash (if successful).

txIndex QUANTITY – The index position, as an integer, of the transaction in the block.

blockHash DATA, 32 Bytes – The hash of the block this transaction was in.

blockNumber QUANTITY – The number of the block, as an integer, this transaction was
in.

from DATA, 20 Bytes – The public key of the sender of this private transaction.

to DATA, 20 Bytes – The address of the account receiving this transaction. null if a
contract creation transaction.

cumulativeGasUsed QUANTITY – The total amount of gas used when this transaction
was executed in the block.

gasUsed QUANTITY – The amount of gas used by this specific transaction.

contractAddress DATA, 20 Bytes – The contract address created, if a contract creation
transaction, otherwise null.

logs Array – An array of log objects generated by this transaction.

logsBloom DATA, 256 Bytes – A bloom filter for light clients to quickly retrieve related
logs.

error STRING – Optional. Includes an error message describing what went wrong.

id DATA – Optional. The ID of the request corresponding to this transaction, as provided in
the initial [JSON-RPC] call.

Also returned is either:

root DATA, 32 bytes – The post-transaction stateroot (pre-Byzantium).

status QUANTITY – The return status, either 1 (success) or 0 (failure).

Request Format

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendRawTransactionAsync","params": [{see
 above}],
"id":1}'

Response Format

{
"id":1,
"jsonrpc": "2.0"
}

Callback Format

{
"txHash":
"0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331"
"txIndex": "0x1", // 1
"blockNumber": "0xb", // 11
"blockHash": "0xc6ef2fc5426d6ad6fd9e2a26abeab0aa2411b7ab17f30a99d3cb96ae
d1d1055b",
"cumulativeGasUsed": "0x33bc", // 13244
"gasUsed": "0x4dc", // 1244
"contractAddress": "0xb60e8dd61c5d32be8058bb8eb970870f07233155", // or n
ull, if none was created
"logs": "[{
 // logs as returned by getFilterLogs, etc.
}, ...]",
"logsBloom": "0x00...0", // 256 byte bloom filter
"status": "0x1"
}

This section presents smart contract interfaces providing the necessary information for Enterprise
Ethereum clients to enforce permissioning models in an interoperable manner. This includes both
node-permissioning and account-permissioning interfaces.

It is based on a chain deployment architecture where permissioning is split into permissioning
management, handled by a permissioning contract on the Enterprise Ethereum blockchain, and
permissioning enforcement, handled by the Enterprise Ethereum client based on information
provided by the permissioning contract.

6.3.3 Permissioning Smart Contract

This section is non-normative.

Permissioning enforcementPermissioning enforcement is performed to enforce the permissioning requirements of an
Enterprise Ethereum blockchain. To obtain the information necessary to conduct enforcement,
Enterprise Ethereum clients call specific functions in the permissioning contracts. These are
common functions for all clients on the Enterprise Ethereum blockchain to use. The included
functions are:

connectionAllowed
Determines whether to permit a connection with another node.

transactionAllowed
Determines whether to accept a transaction received from a given Ethereum account.

A client is not necessarily able to update the permissioning scheme, nor does it automatically
have any knowledge of its implementation.

The node-permissioning and account-permissioning interfaces emit NodePermissionsUpdated
and AccountPermissionsUpdated events, respectively, when the underlying rules are
changed. Clients register for these events that signal when to re-assess any permissions that were
previously checked to ensure that results being used, or that were cached, are revalidated when
necessary.

The events contain the addsRestrictions and addsPermissions Boolean flags. If either flag
is set to true, any previous connectionAllowed or transactionAllowed call could now
result in a different outcome, because the previously checked permissions have changed. If
addsRestrictions is true, then one or more connectionAllowed or transactionAllowed
calls that previously returned true will now return false. Similarly, if addsPermissions is
true, at least one connectionAllowed or transactionAllowed call that previously returned
false will now return true.

6.3.3.1 Permissioning Enforcement

EXAMPLE 3

If a connection has been opened, based on the result of calling the 'connectionAllowed'
function, and a NodePermissionsUpdated event is received, with the addsRestrictions
flag set to true, then it is important for the client to revalidate that connection in case it is no
longer authorized.

6.3.3.2 Permissioning Management

This section is non-normative.

The permissioning management smart contract functions provide the ability to configure and
manage the permissioning model in use. These include the bulk of the constructs used to
organize permissions, processes to adjust permissions, administration of the permissioning
mechanism, and enforcing any regulatory requirements.

The definition of these permissioning managementpermissioning management functions depends on the permissioning
model of the specific Enterprise Ethereum blockchain. It is outside the scope of this
Specification, but crucial to the operation of the system.

Enterprise Ethereum blockchain operators can choose any permissioning model that suits their
needs.

Implementations of the permissioning contracts (both enforcement and management functions)
are provided on the Enterprise Ethereum blockchain by the blockchain operator. The
implementation of permissioning enforcement functions, such as connectionAllowed, is part
of the permissioning contract.

When a management function is called that updates the permissioning model, the node or
account smart contract interfaces emit NodePermissionsUpdated or
AccountPermissionsUpdated events, respectively, based on the permissions change.

Node permissioningNode permissioning restricts the peer connections that can be established with other nodes in
the Enterprise Ethereum blockchain. This helps to prevent interference and abuse by external
parties and can establish a trusted whitelist of nodes.

[P] PERM-200: Enterprise Ethereum clients MUST call the connectionAllowed function, as
specified in Section 6.3.3.3.1 Node Permissioning Functions, or if it implements PERM-220 and
PERM-230, MAY use cached information to determine whether a connection with another node is
permitted, and any restrictions to be placed on that connection.

The connectionAllowed function returns a bytes32 type, which is interpreted as a bitmask
with each bit representing a specific permission for the connection.

[P] PERM-210: When checking the response to connectionAllowed, if any unknown
permissioning bits are found to be zero, Enterprise Ethereum clients MUST reject the connection.

[P] PERM-220: On receipt of a NodePermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST:

6.3.3.3 Node Permissioning

Purge all cached results from previous calls to connectionAllowed where the result
returned was true.

Close any network connections that are no longer permitted.

Impose newly added restrictions on any network connections that have had restrictions
added.

[P] PERM-230: On receipt of a NodePermissionsUpdated event containing an
addsPermissions property with the value true, Enterprise Ethereum clients MUST:

Purge all cached results from previous calls to connectionAllowed where the result
returned was false.

Check whether existing network connections have had their restrictions lifted and allow
future actions that are now permitted.

This section is non-normative.

The node connection rules support both the IPv4 and IPv6 protocol versions. IPv6 addresses are
represented using their logical byte value with big endian byte ordering. IPv4 addresses are
specified in the IPv4 reserved space within the IPv6 address space, which is found at
0000:0000:0000:0000:0000:ffff:, and can be be assembled by taking the logical byte value
of the IPv4 address with big endian byte ordering, and prefixing it with 80 bits of zeros followed
by 16 bits of ones.

The connectionAllowed function is found at the address given by the
nodePermissionContract parameter in the network configuration. It implements the
following interface, including the NodePermissionsUpdated event:

Interface
[
 {
 "name": "connectionAllowed",
 "stateMutability": "view",
 "type": "function",
 "inputs": [
 {
 "name": "sourceEnodeHigh",
 "type": "bytes32"
 },
 {

6.3.3.3.1 NODE PERMISSIONING FUNCTIONS

 "name": "sourceEnodeLow",
 "type": "bytes32"
 },
 {
 "name": "sourceIp",
 "type": "bytes16"
 },
 {
 "name": "sourcePort",
 "type": "uint16"
 },
 {
 "name": "destinationEnodeHigh",
 "type": "bytes32"
 },
 {
 "name": "destinationEnodeLow",
 "type": "bytes32"
 },
 {
 "name": "destinationIp",
 "type": "bytes16"
 },
 {
 "name": "destinationPort",
 "type": "uint16"
 },
],
 "outputs": [
 {
 "name": "result",
 "type": "bytes32"
 }
]
 },
 {
 "type": "event",
 "name": "NodePermissionsUpdated",
 "inputs": [
 {
 "name": "addsRestrictions",
 "type": "bool",
 "indexed": false
 },
 {
 "name": "addsPermissions",

 "type": "bool",
 "indexed": false
 }
]
 }
]

Arguments

sourceEnodeHigh: The high (first) 32 bytes of the enode address of the node initiating the
connection.

sourceEnodeLow: The low (last) 32 bytes of the enode address of the node initiating the
connection.

sourceIp: The IP address of the node initiating the connection. If the address is IPv4, it
should be prefixed by 80 bits of zeros and 16 bits of ones, bitmasking it such that it fits the
IPv4 reserved space in IPv6. For example, ::ffff:127.0.0.1.

sourceEnodePort: The peer-to-peer listening port of the node initiating the connection.

destinationEnodeHigh: The high (first) 32 bytes of the enode address of the node
receiving the connection.

destinationEnodeLow: The low (last) 32 bytes of the enode address of the node receiving
the connection.

destinationIp: The IP address of the node receiving the connection. If the address is
IPv4, it should be prefixed by 80 bits of zeros and 16 bits of ones, bitmasking it such that it
fits the IPv4 reserved space in IPv6. For example, ::ffff:127.0.0.1.

destinationEnodePort: The peer-to-peer listening port of the node receiving the
connection.

result: A bitmask of the permissions granted for this connection.

addsRestrictions: If the rules change that caused the NodePermissionsUpdated event
to be emitted involves further restricting existing permissions, this will be true, otherwise
false.

addsPermissions: If the rules change that caused the NodePermissionsUpdated event
to be emitted involves granting new permissions, this will be true, otherwise false.

This section is non-normative.

6.3.3.3.2 NODE PERMISSIONS

While the core premise of node permissioning is whether a connection is allowed to occur or not,
there are additional restrictions that can be imposed on a connection between two nodes based on
the permitted behavior of the nodes.

The various permissions that can be granted to a connection are represented by bits being set in
the bitmask response from connectionAllowed. Where bits are unset, the client restricts the
behavior of the remote node according to the unset bits.

The remaining bits in the response are normally set to one. If any of the remaining bits are zero,
an unknown permission restriction was placed on the connection and the connection will be
denied. These unknown zeros are likely to represent permissions defined in future versions of
this specification. Where they cannot be interpreted by a client, the connection is rejected.

Connection Permitted

Permission Bit Index: 0

The connection is allowed to be established.

This section is non-normative.

A client connecting to a chain that maintains a permissioning contract finds the address of the
contract in the network configuration. When a peer connection request is received, or a new
connection request initiated, the permissioning contract is queried to assess whether the
connection is permitted. If permitted, the connection is established and when the node is queried
for peer discovery, this connection can be advertised as an available peer. If not permitted, the
connection is either refused or not attempted, and the peer excluded from any responses to peer
discovery requests.

During client startup and initialization the client begins at a bootnode and initially has a global
state that is out of sync. Until the client reaches a trustworthy head it is unable to reach a current
version of the node permissioning that correctly represents the current state of the blockchain.

This section is non-normative.

6.3.3.3.3 CLIENT IMPLEMENTATION

6.3.3.3.4 CHAIN INITIALIZATION

At the genesis block an initial permissioning contract is normally included, configured so the
initial nodes are able to establish connections to each other.

The genesis blockgenesis block is the first block (block 0) of a blockchain.

Account permissioningAccount permissioning controls which accounts are able to send transactions and the type of
transactions permitted.

[P] PERM-240: Enterprise Ethereum clients MUST NOT accept a transaction unless either:

1. The client calls the transactionAllowed function, as specified in Section 6.3.3.4.1
Account Permissioning Function, for the transaction, with worldstate as at the block's
parent, and

the function returns a value of true;

or

2. The client has previously called the transactionAllowed function, as specified in
Section Account permissioning function, for the transaction, with worldstate as at the
block's parent, and

The function returned a value of true, and

the client has not subsequently received an AccountPermissionsUpdated event
containing an addsRestrictions property with the value true.

[P] PERM-250: On receipt of an AccountPermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST:

Purge all cached results from previous calls to transactionAllowed where the result
returned was true.

Impose newly added restrictions on any accounts that have had restrictions added.

[P] PERM-260: On receipt of an AccountPermissionsUpdated event containing an
addsPermissions property with the value true, Enterprise Ethereum clients MUST:

Purge all cached results from previous calls to transactionAllowed where the result
returned was false.

Allow future transactions from accounts that are now permitted.

6.3.3.4 Account Permissioning

6.3.3.4.1 ACCOUNT PERMISSIONING FUNCTION

This section is non-normative.

The transactionAllowed function is found at the address given by the
transactionPermissionContract parameter in the network configuration. It implements the
following interface, including the AccountPermissionsUpdated event:

Interface
[
 {
 "name": "transactionAllowed",
 "stateMutability": "view",
 "type": "function",
 "inputs": [
 {
 "name": "sender",
 "type": "address"
 },
 {
 "name": "target",
 "type": "address"
 },
 {
 "name": "value",
 "type": "uint256"
 },
 {
 "name": "gasPrice",
 "type": "uint256"
 },
 {
 "name": "gasLimit",
 "type": "uint256"
 },
 {
 "name": "payload",
 "type": "bytes"
 }
],
 "outputs": [
 {
 "name": "result",
 "type": "bool"
 }
]
 },
 {

 "type": "event",
 "name": "AccountPermissionsUpdated",
 "inputs": [
 {
 "name": "addsRestrictions",
 "type": "bool",
 "indexed": false
 },
 {
 "name": "addsPermissions",
 "type": "bool",
 "indexed": false
 }
]
 }
]

Arguments

sender: The address of the account that created this transaction.

target: The address of the account or contract that this transaction is directed at. For a
creation contract where there is no target, this should be zero filled to represent the null
address.

value: The eth value being transferred in this transaction.

gasPrice: The gas price included in this transaction

gasLimit: The gas limit in this transaction.

payload: The payload in this transaction. Either empty if a simple value transaction, the
calling payload if executing a contract, or the EVM code to be deployed for a contract
creation.

addsRestrictions: If the rules change that caused the AccountPermissionsUpdated
event to be emitted involves further restricting existing permissions, this will be true.

addsPermissions: If the rules change that caused the AccountPermissionsUpdated
event to be emitted grants new permissions, this will be true.

Return value

boolean result, where a value of true means the account submitting the transaction has
permission to submit it, and false meaning the account does not.

6.3.3.4.2 CLIENT IMPLEMENTATION

This section is non-normative.

A client connecting to a chain that maintains a permissioning contract can find the address of the
transactionAllowed function in the transactionPermissionContract parameter of the
network configuration.

When mining new blocks the node checks the validity of transactions using the appropriate
permissioning contract with the state at the block's parent. If not permitted, the transaction is
discarded. If permitted, the transaction is included in the new block and the block dispatched to
other nodes.

When receiving a block the node checks each included transaction using the permissioning
contract with the state at the block's parent. If any transactions in the new block are not
permitted, the block is considered invalid and discarded. If all transactions are permitted, the
block passes the permissioning validation check and is then subject to any other validity
assessments the client might usually perform.

Depending on the use case of a client, the implementation can also check validity of transactions
submitted through RPC methods or received through peer-to-peer communication. For such
validation, it is expected that the contracts are used with the state represented at the current head.

Reading of a contract is an unrestricted operation.

This section is non-normative.

When a transaction is checked by the contract it can be assessed by any of the fields provided to
restrict operations, such as transferring value between accounts, rate limiting spend or receipt of
value, restricting the ability to execute code at an address, limiting gas expenditure or enforcing a
minimum expenditure, or restricting the scope of a created contract.

When checking the execution of code at an address, it can be useful to be aware of the
EXTCODEHASH EVM operation, which allows for checking whether there is code present to be
executed at the address that received the request.

For restricting the scope of created contracts it might be necessary to do static code analysis of
the EVM bytecode payload for properties that are not allowed. For example, restricting creation
of contracts that employ the create contract opcode.

6.3.3.4.3 CONTRACT IMPLEMENTATION

6.3.3.4.4 CHAIN INITIALIZATION

This section is non-normative.

At the genesis block the permissioning contract function is included in block 0, configured so
initial accounts can perform required value transactions, a predetermined set of accounts can
invoke the contracts defined in the genesis file, and if desired, a predetermined set of accounts
can create new contracts.

This section is non-normative.

With the rapid expansion in the number of different blockchains and ledgers, inter-chaininter-chain
mediatorsmediators allow interaction between these blockchains. Like other solutions that provide
privacy and scalability, inter-chain mediators can be built in Layer 2, such as using public
Ethereum to anchor state as needed for tracking and checkpoints.

Privacy, performance, and permissioning are the "3 P's" of Enterprise Ethereum. This section
describes the extensions in Enterprise Ethereum that support these requirements.

Privacy and performance solutions are broadly categorized into:

Layer 1Layer 1 solutions, which are implemented at the base level protocol layer using techniques
such as [sharding] and easy parallelizability [EIP-648].

Layer 2Layer 2 solutions, which do not require changes to the base level protocol layer. They are
implemented at the application protocol layer, for example using [Plasma], [state-channels],
and off-chain trusted computing mechanisms.

Many use cases for Enterprise Ethereum blockchains have to comply with regulations related to
privacy. For example, banks in the European Union are required to comply with the European
Union revised Payment Services Directive [PSD2] when providing payment services, and the
General Data Protection Regulation [GDPR] when storing personal data regarding individuals.

Enterprise Ethereum clients support privacy with techniques such as private transactions and
enabling an Enterprise Ethereum blockchain to permit anonymous participants. Clients can also
support privacy-enhanced Off-chain trusted computing.

6.3.4 Inter-chain

7. Enterprise 3 P's Layer

7.1 Privacy Sublayer

New privacy mechanisms are are also being explored as extensions to public Ethereum,
including zero-knowledge proofszero-knowledge proofs [ZKP], which is a cryptographic technique where one party
(the prover) can prove to another party (the verifier) that the prover knows a value , without
conveying any information apart from the fact that the prover knows the value. [ZK-STARKS] is
an example of a zero-knowledge proof method.

A transactiontransaction is a request to execute operations on a blockchain that change the state of one or
more accounts. Transactions are a core component of most blockchains, including public
Ethereum and Enterprise Ethereum. Nodes processing transactions is the fundamental basis of
adding blocks to the chain.

A private transactionprivate transaction is a transaction where some information about the transaction, such as
the payload data, or the sender or the recipient, is only available to the subset of parties privy to
that transaction.

Enterprise Ethereum clients support at least one form of private transactions, as outlined in
Section 7.1.4 Private Transactions. Private transactions can be realized in various ways,
controlling which nodes see which private transactions or transaction data.

Enterprise Ethereum implementations can also support off-chain trusted computing, enabling
privacy during code execution.

This section is non-normative.

Various on-chain techniques can improve the security and privacy capabilities of Enterprise
Ethereum blockchains.

NOTE: On-chain Security Techniques

Future on-chain security techniques could include techniques such as [ZK-STARKS], range
proofs, or ring signatures.

This section is non-normative.

Off-chain trusted computingOff-chain trusted computing uses a privacy-enhanced system to handle some of the
computation requested by a transaction. Such systems can be hardware-based, software-based, or

x

7.1.1 On-chain Privacy

7.1.2 Off-chain Privacy (Trusted Computing)

a hybrid, depending on the use case.

The EEA has developed Trusted Computing APIs for Ethereum-compatible trusted computing
[EEA-OC], and requirement EXEC-050 enables Enterprise Ethereum clients to use them for
improved privacy.

This section is non-normative.

A privacy groupprivacy group is a collection of participants privy to a private transaction. Each member of
the group has the ability to decrypt and read a private transaction sent to the group.

An Enterprise Ethereum client maintains the public world state for the blockchain and a private
state for each privacy group. The private states contain data that is not shared in the globally
replicated world state. A private transaction causes a state transition in the public state (that is, a
private transaction was committed) and a state transition in the private state (that is, a smart
contract state was changed or some information was exchanged in the private state).

The privateFrom and privateFor parameters in the send transaction calls are the public keys
of the participants intended to be able to decrypt the private transaction. The privacyGroupId
parameter uniquely identifies a privacy group. Members of a privacy group are specified by their
public keys.

A client is expected to propagate a newly created or updated privacy group to the other members
which are part of the privacy group.

7.1.3 Privacy Groups

EXAMPLE 4: Privacy Group Example Object

{
 “name”: “my privacy group”
 “privacyGroupId”: “Vbj70zF+G2V/8XoyZzwqawfcQ+r9BkXoLQOqkQideys=”
 “members”: [
 “negmDcN2P4ODpqn/6WkJ02zT/0w0bjhGpkZ8UP6vARk=”,
 “g59BmTeJIn7HIcnq8VQWgyh/pDbvbt2eyP0Ii60aDDw=”
]
 “description”: “this is an example privacy group”
}

7.1.4 Private Transactions

The privateFrom and privateFor parameters in the eea_sendTransactionAsync and
eea_sendTransaction calls specify the public keys of the sender and the intended recipients,
respectively, of a private transaction. The private transaction type is specified using the
restriction parameter. The two defined private transaction types are:

Restricted private transactionsRestricted private transactions, where payload data is transmitted to and readable only
by the parties to the transaction.

Unrestricted private transactionsUnrestricted private transactions, where encrypted payload data is transmitted to all
nodes in the Enterprise Ethereum blockchain, but readable only by the parties to the
transaction.

[P] PRIV-010: Enterprise Ethereum clients MUST support one of restricted private transactions
or unrestricted private transactions.

Transaction information consists of two parts:

MetadataMetadata, which is the set of data that describes and gives information about the payload
data in a transaction. Metadata is the envelope information necessary to execute a
transaction.

Payload dataPayload data, which is the content of the data field of a transaction, usually obfuscated in
private transactions. Payload data is separate from the metadata in a transaction.

If implementing restricted private transactions:

[P] PRIV-020: Enterprise Ethereum clients MUST encrypt payload data when stored in
restricted private transactions.

[P] PRIV-030: Enterprise Ethereum clients MUST encrypt payload data when in transit in
restricted private transactions.

[P] PRIV-040: Enterprise Ethereum clients MAY encrypt metadata when stored in restricted
private transactions.

[P] PRIV-050: Enterprise Ethereum clients MAY encrypt metadata when in transit in
restricted private transactions.

[P] PRIV-060: Nodes that relay a restricted private transaction, but are not party to that
transaction, MUST NOT store the payload data.

[P] PRIV-070: Nodes that relay a restricted private transaction, but are not party to that
transaction, SHOULD NOT store the metadata.

[P] PRIV-080: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or
eea_sendRawTransaction methods (see Section 6.3.2 Extensions to the JSON-RPC API)

with the restriction parameter set to restricted, MUST result in a restricted private
transaction.

NOTE: Restricted Private Transactions

Private transactions can also be implemented by creating private channels. That is, private
smart contracts where the payload data is only stored by the clients participating in a
transaction, and not by any other client (despite that the payload data might be encrypted and
only decodable by authorized parties).

Private transactions are kept private between related parties, so unrelated parties have no
access to the content of the transaction, the sending party, or the addresses of accounts party
to the transaction. In fact, a private smart contract has a similar relationship to the blockchain
that hosts it as a private blockchain that is only replicated and certified by a subset of
participating nodes, but is notarized and synchronized on the hosting blockchain. This private
blockchain is thus able to refer to data in less restrictive private smart contracts, as well as in
public smart contracts.

If implementing unrestricted private transactions:

[P] PRIV-090: Enterprise Ethereum clients SHOULD encrypt the recipient identity when
stored in unrestricted private transactions.

[P] PRIV-100: Enterprise Ethereum clients SHOULD encrypt the sender identity when
stored in unrestricted private transactions.

[P] PRIV-110: Enterprise Ethereum clients SHOULD encrypt the payload data when stored
in unrestricted private transactions.

[P] PRIV-120: Enterprise Ethereum clients MUST encrypt payload data when in transit in
unrestricted private transactions.

[P] PRIV-130: Enterprise Ethereum clients MAY encrypt metadata when stored in
unrestricted private transactions.

[P] PRIV-140: Enterprise Ethereum clients MAY encrypt metadata when in transit in
unrestricted private transactions.

[P] PRIV-150: Nodes that relay an unrestricted private transaction, but are not party to that
transaction, MAY store the payload data.

[P] PRIV-160: Nodes that relay an unrestricted private transaction, but are not party to that
transaction, MAY store the metadata.

[P] PRIV-170: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or

eea_sendRawTransaction methods (see Section 6.3.2 Extensions to the JSON-RPC API)
with the restriction parameter set to unrestricted MUST result in an unrestricted
private transaction.

[P] PRIV-210: Enterprise Ethereum clients implementing unrestricted private transactions
MUST provide the ability for nodes to achieve global consensus.

NOTE: Unrestricted Private Transactions

Obfuscated data that is replicated across all nodes can be reconstructed by any node, albeit in
encrypted form. Mathematical transactions on numerical data are intended to be validated by
the underlying Enterprise Ethereum blockchain on a zero-knowledge basis. The plaintext
content is only available to the parties privy to the transaction. Therefore a node is expected
to be able to maintain and transact against numerical balances certified by the whole
community of validators on a zero-knowledge basis.

An alternative to the zero-knowledge approach could be the combined use of ring signatures,
stealth addresses, and mixing, which is demonstrated to provide the necessary level of
obfuscation that is mathematically impossible to penetrate and does not rely on the trusted
setup required by [ZK-STARKS].

[P] PRIV-180: Enterprise Ethereum clients SHOULD be able to extend the set of parties privy to
a private transaction (or forward the private transaction in some way).

[P] PRIV-190: Enterprise Ethereum clients SHOULD provide the ability for nodes to achieve
consensus on their mutually private transactions.

The differences between restricted private transactions and unrestricted private transactions are
summarized in the table below.

Table 2 Restricted and Unrestricted Private Transactions

Restricted Private TXNs (if implemented)
Unrestricted Private TXNs (if
implemented)

Metadata Payload Data Metadata Payload Data

MAY encrypt MUST encrypt

MAY encrypt

SHOULD encrypt
sender and recipient
identity

MUST encrypt in
transit

SHOULD encrypt
in storage

SHOULD NOT allow
storage by non-
participating nodes

MUST NOT allow
storage by non-
participating nodes

MAY allow storage
by non-
participating nodes

MAY allow storage
by non-
participating nodes

This section is non-normative.

Performance is an important requirement for Enterprise Ethereum clients because many use cases
for Enterprise Ethereum blockchains imply a high volume of transactions, or computationally-
heavy tasks. The overall performance of a blockchain is constrained by the slowest node.

There are many different aspects of performance, and instead of mandating specific
requirements, this Specification notes the importance of performance, leaving Enterprise
Ethereum client developers free to implement whatever strategies are appropriate for their
software.

This Specification does not constrain experimentation to improve the performance of Enterprise
Ethereum clients. This is an active area of research and it is likely various techniques to improve
performance will be developed over time, which cannot be exactly predicted.

This Specification does mandate or allow for several optimizations to improve performance. The
most important techniques maximize the throughput of transactions.

Techniques to improve performance through scaling are valuable for blockchains where
processing is kept on the blockchain and have high transaction throughput requirements.

On-chain (layer 1) scaling techniques, like [sharding], are changes or extensions to the public
Ethereum protocol to facilitate increased transaction speeds.

On-chain (layer 2) scaling techniques use smart contracts, and approaches like [Plasma], or
[state-channels], to increase transaction speed without changing the underlying Ethereum
protocol. For more information, see [Layer2-Scaling-Solutions].

Off-chain computing can be used to increase transaction speeds by moving the processing of
computationally-intensive tasks from nodes processing transactions to one or more trusted

7.2 Performance Sublayer

7.2.1 On-chain (Layer 1 and Layer 2) Scaling

7.2.2 Off-chain (Layer 2 Compute)

computing services. This reduces the resources needed by nodes allowing them to produce
blocks faster. This functionality can be enabled by Enterprise Ethereum clients by implementing
requirement EXEC-050.

PermissioningPermissioning is the property of a system that ensures operations are executed by and
accessible to designated parties. For Enterprise Ethereum, permissioning refers to the ability of a
node to join an Enterprise Ethereum blockchain, and the ability of individual accounts or nodes
to perform specific functions. For example, an Enterprise Ethereum blockchain might allow only
certain nodes to act as validators, and only certain accounts to instantiate smart contracts.

Enterprise Ethereum provides a permissioned implementation of Ethereum supporting peer node
connectivity permissioning, account permissioning, and transaction type permissioning.

[C] NODE-010: Enterprise Ethereum implementations MUST provide the ability to specify at
startup a list of static peer nodes to establish peer-to-peer connections with.

[C] NODE-020: Enterprise Ethereum clients MUST provide the ability to enable or disable peer-
to-peer node discovery.

[P] NODE-030: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of
the nodes permitted to connect to a node.

[P] NODE-080: Enterprise Ethereum clients MUST provide the ability to specify node identities
in a way aligned with the concept of groups.

[P] NODE-090: Enterprise Ethereum clients SHOULD implement transaction ordering
identically to the ordering in Geth: "by Price and by Nonce" (ethereum/go-
ethereum/core/types/transaction.go, lines 337-349, as of commit #50e3795).

[P] NODE-095: Enterprise Ethereum clients MUST specify explicitly and precisely in
documentation any transaction ordering logic that is different from that of Geth as recommended
in NODE-090.

For the purpose of this Specification:

7.3 Permissioning Sublayer

7.3.1 Nodes

7.3.2 Ethereum Accounts

https://github.com/ethereum/go-ethereum/blob/master/core/types/transaction.go

An organizationorganization is a logical group composed of Ethereum accounts, nodes, and other
organizations or suborganizations. A suborganizationsuborganization is an organization controlled by and
subordinate to another organization. An organization typically represents an enterprise, or
some identifiable part of an enterprise. For the purpose of permissioning, organizations
roughly correspond to the UNIX concept of groups.

A useruser is a human or an automated process interacting with an Enterprise Ethereum
blockchain using the Ethereum JSON-RPC API. The identity of a user is represented by an
Ethereum account. Public key cryptography is used to sign transactions made by the user so
the EVM can authenticate the identity of a user sending a transaction.

An Ethereum accountEthereum account is an established relationship between a user and an Ethereum
blockchain. Having an Ethereum account allows users to interact with a blockchain, for
example to submit transactions or deploy smart contracts. See also, wallet.

GroupsGroups are collections of users that have or are allocated one or more common attributes.
For example, common privileges allowing users to access a specific set of services or
functionality.

RolesRoles are sets of administrative tasks, each with associated permissions that apply to users
or administrators of a system, used for example in RBAC permissioning contracts.

[P] PART-010: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of
accounts that are permitted to transact with the blockchain.

[P] PART-015: Enterprise Ethereum clients MUST be able to verify that accounts are present on
the whitelist required by PART-010 when adding transactions from the account to a block, and
when verifying a received block containing transactions created by that account.

The Core Blockchain layer consists of the Storage and Ledger, Execution, and Consensus
sublayers.

The Storage and Ledger sublayer is provided to store the blockchain state, such as smart
contracts for later execution. This sublayer follows blockchain security paradigms such as using
cryptographically hashed tries, a UTXO model, or at-rest-encrypted key-value stores.

The Execution sublayer implements the Ethereum Virtual MachineEthereum Virtual Machine (EVM), which is a
runtime computing environment for the execution of smart contracts. Each node operates an
EVM.

Ethereum-flavored WebAssembly [eWASM], which has its own instruction set and other
computational capabilities, is also implemented at this layer.

8. Core Blockchain Layer

Smart contractsSmart contracts are computer programs that the EVM executes. Smart contracts can be written
in higher-level programming languages and compiled to EVM bytecode. Smart contracts can
implement a contract between parties, where the execution is guaranteed and auditable to the
level of security provided by Ethereum itself.

A precompiled contractprecompiled contract is a smart contract compiled into EVM bytecode and stored by a
node.

Finally, the Consensus sublayer provides a mechanism to establish consensus between nodes.
ConsensusConsensus is the process of nodes on a blockchain reaching agreement about the current state of
the blockchain.

A consensus algorithmconsensus algorithm is the mechanism by which a blockchain achieves consensus. Different
blockchains can use different consensus algorithms, but all nodes of a given blockchain need to
use the same consensus algorithm. Different consensus algorithms are available for both public
Ethereum and Enterprise Ethereum.

Enterprise Ethereum clients can provide additional consensus algorithms for operations within
their private consortium networkconsortium network (an Ethereum blockchain, either public Ethereum or
Enterprise Ethereum, which is not part of the Ethereum MainNet).

To operate an Enterprise Ethereum client, and to support optional off-chain operations, local data
storage is needed. For example, clients can locally cache the results from a trusted oracle or store
information related to systems extensions that are beyond the scope of this Specification.

Private StatePrivate State is the state data that is not shared in the clear in the globally replicated state tree.
This data can represent bilateral or multilateral arrangements between parties, for example in
private transactions.

[P] STOR-040: Enterprise Ethereum clients SHOULD permit a smart contract operating on
private state to access private state created by other smart contracts involving the same parties to

EXAMPLE 5: Consensus Algorithms

An example public consensus algorithm is the Proof of Work (PoW) algorithm, which is
described in the [Ethereum-Yellow-Paper]. Over time, PoW is likely to be phased out from
use and replaced with new methods of consensus. Other example consensus algorithms
include Istanbul [Byzantine-Fault-Tolerant] (IBFT) [EIP-650], [RAFT], and Proof of Elapsed
Time [PoET].

8.1 Storage and Ledger Sublayer

the transaction.

[P] STOR-050: Enterprise Ethereum clients MUST NOT permit a smart contract operating on
private state to access private state created by other smart contracts involving different parties to
the transaction.

[P] STOR-070: If an Enterprise Ethereum client stores private state persistently, it SHOULD
protect the data using an Authenticated Encryption with Additional Data (AEAD) algorithm,
such as one described in [RFC5116].

[P] EXEC-010: Enterprise Ethereum clients MUST provide a smart contract execution
environment implementing the public Ethereum EVM opcode set [EVM-Opcodes] that are
compatible with the Istanbul hard fork [EIP-1679].

[P] EXEC-020: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] MUST register the opcode and
the name of the Enterprise Ethereum client in the [EEA-extended-opcode-registry].

[P] EXEC-025: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] SHOULD register a
description of the new functionality, and a URL for a complete specification and test suites in the
[EEA-extended-opcode-registry], and create an EIP describing the new opcode.

[P] EXEC-030: Enterprise Ethereum clients SHOULD support the ability to synchronize their
public state with the public state held by other public Ethereum nodes.

Trusted computing ensures only authorized parties can execute smart contracts on an execution
environment available to a given Enterprise Ethereum blockchain.

[C] EXEC-050: Enterprise Ethereum clients that support off-chain trusted computing MUST
implement the precompiled function for Worker Attestation [TC-Precompile] defined by the EEA
Offchain / Trusted Computing group.

Multiple encryption techniques can be used to secure trusted computing and private state.

[C] EXEC-060: Enterprise Ethereum clients MAY support configurable alternative cryptographic
curves as encryption options for Enterprise Ethereum blockchains.

8.2 Execution Sublayer

8.2.1 Finality

https://github.com/EntEthAlliance/trusted-computing/blob/master/docs/TC-Precompiled-Contract-EEP.md

FinalityFinality occurs when a transaction is definitively part of the blockchain and cannot be removed.
A transaction reaches finality after some event defined for the relevant blockchain occurs. For
example, an elapsed amount of time or a specific number of blocks added.

[P] FINL-010: When a deterministic consensus algorithm is used, Enterprise Ethereum clients
SHOULD treat transactions as final after a defined interval or event. For example, after a defined
time period has elapsed, or after a defined number of blocks were created since the transaction
was included in a block.

A common consensus algorithm implemented by all clients is required to ensure interoperability
between clients.

[Byzantine-Fault-Tolerant] consensus algorithms ensure a certain proportion of malfunctioning
nodes performing voting, block-making, or validation roles do not pose a critical risk to the
blockchain. This makes them an excellent choice for many blockchains. The Technical
Specification Working Group are considering existing and new Byzantine-Fault-Tolerant
consensus algorithms, primarily those related to IBFT [EIP-650], with the goal of adopting the
outcomes of that work as a required consensus algorithm as soon as possible.

[P] CONS-050: Enterprise Ethereum clients MAY implement multiple consensus algorithms.

[P] CONS-093: Enterprise Ethereum clients MUST support the Clique, Proof of Authority
consensus algorithm [EIP-225].

[P] CONS-110: Enterprise Ethereum clients MUST provide the ability to specify the consensus
algorithms, through network configuration, to be used for each public blockchain and private
blockchain in use.

The Network layer consists of a peer-to-peer networking protocol implementation allowing
nodes to communicate with each other. For example, the DEVp2pDEVp2p protocol, which defines
messaging between nodes to establish and maintain a communications channel for use by higher
layer protocols.

Network protocols define how nodes communicate with each other.

8.3 Consensus Sublayer

9. Network Layer

9.1 Network Protocol Sublayer

https://github.com/entethalliance/enhanced-bft

[P] PROT-010: Nodes MUST be identified and advertised using the Ethereum [enode] URL
format.

[P] PROT-015: Enterprise Ethereum clients MUST implement the [DEVp2p-Node-Discovery]
protocol.

The [Ethereum-Wire-Protocol] defines higher layer protocols, known as capability protocolscapability protocols,
for messaging between nodes to exchange status, including block and transaction information.
[Ethereum-Wire-Protocol] messages are sent and received over an already established DEVp2p
connection between nodes.

[P] PROT-020: Enterprise Ethereum clients MUST use the [DEVp2p-Wire-Protocol] for
messaging between nodes to establish and maintain a communications channel for use by
capability protocols.

[P] PROT-050: To minimize the number of point-to-point connections needed between private
nodes, some private nodes SHOULD be capable of relaying private transaction data to multiple
other private nodes.

[P] PROT-060: Enterprise Ethereum clients SHOULD implement the [Whisper-protocol].

[P] PROT-070: Enterprise Ethereum clients MUST interpret the parameters defined in Section
A.2 Defined Events, Functions, and Network Configuration Parameters for network configuration
when found in the genesis file.

Network configurationNetwork configuration refers to the collection of settings defined for a blockchain as described
in Section A.2 Defined Events, Functions, and Network Configuration Parameters, such as the
addresses of the permissioning contracts. It is a set of parameters included as JSON data in the
genesis file (genesis.json).

EXAMPLE 6: Relaying Private Transaction Data

Multi-party private smart contracts and transactions do not require direct connectivity
between all parties because this is very impractical in enterprise settings, especially when
many parties are allowed to transact. Nodes common to all parties (for example, voters or
blockmakers acting as bootnodes to all parties, and as backup or disaster recovery nodes) are
intended to function as gateways to synchronize private smart contracts transparently.
Transactions on private smart contracts could then be transmitted to all participating parties
in the same way.

10. Cross-client Compatibility

Cross-client compatibility refers to the ability of an Enterprise Ethereum blockchain to operate
with different clients.

Enterprise Ethereum clients implements a web3 programming model, which can be updated with
hard forks.

[P] XCLI-001: Enterprise Ethereum clients MUST implement [EIP-155] (included in the
Spurious Dragon hard fork) to introduce chain_id into transaction signing.

[P] XCLI-002: Enterprise Ethereum clients MUST implement [EIP-658] (included in the
Byzantium hard fork) to embed the transaction status code in receipts.

Future versions of this Specification are expected to align with newer versions of public
Ethereum as they are deployed.

This Specification extends the capabilities and interfaces of public Ethereum. The requirements
relating to supporting and extending the public Ethereum opcode set are outlined in Section 8.2
Execution Sublayer.

[P] XCLI-020: Enterprise Ethereum clients MAY extend the public Ethereum APIs. To maintain
compatibility, Enterprise Ethereum clients SHOULD ensure these new features are a superset of
the public Ethereum APIs.

[P] XCLI-030: Enterprise Ethereum clients MUST implement the gas mechanism specified in
the [Ethereum-Yellow-Paper].

[P] XCLI-035: Enterprise Ethereum clients MUST implement the same gas cost per opcode used
in the main net's Istanbul hard fork. [EIP-1679].

NOTE

This requirement will most likely be updated in line with future MainNet hard forks that
change the gas price for opcodes.

It may also be changed in future to allow flexible gas pricing, with a suitable mechanism for
identifying the pricing applied on a particular Enterprise Ethereum Blockchain.

EXAMPLE 7: Extensions to the Public Ethereum API

Extensions to public Ethereum APIs could include peer-to-peer APIs, the [JSON-RPC-API]
over IPC, HTTP/HTTPS, or websockets.

[P] XCLI-040: Enterprise Ethereum clients MUST function correctly when the Gas price is set to
zero.

[P] XCLI-050: Enterprise Ethereum clients MUST implement the eight precompiled contracts
defined in Appendix E of the [Ethereum-Yellow-Paper]:

ecrecover

sha256hash

ripemd160hash

dataCopy

bigModExp

bn256Add

bn256ScalarMul

bn256Pairing.

NOTE

Sample [implementation-code-in-Golang], as part of the Go-Ethereum client is available
from the Go-Ethereum source repository [geth-repo]. Be aware this code uses a combination
of GPL3 and LGPL3 licenses.

Cross-client compatibility extends to the different message encoding formats used by clients.

[P] XCLI-051: Enterprise Ethereum clients MUST implement the precompiled contract for
[RFC7693] Blake 2b F compression defined in [EIP-152]

[P] XCLI-055: Enterprise Ethereum clients MUST register precompiled contracts following the
mechanisms defined by [EIP-1352].

[P] XCLI-060: Enterprise Ethereum clients MUST support the Contract Application Binary
Interface ([ABI]) for interacting with smart contracts.

[P] XCLI-070: Enterprise Ethereum clients MUST support Recursive Length Prefix ([RLP])
encoding for binary data.

This section is non-normative.

11. Cross-chain Interoperability

Cross-chain interoperabilityCross-chain interoperability broadly refers to the ability to consume data from another chain
(read) and to cause an update or another transaction on a distinct chain (write).

Cross-chain interoperability can take two forms:

Ethereum to Ethereum (for example, two or more logically distinct EVM-based chains)

Ethereum to another blockchain architecture.

Cross-chain interoperability is seen as a valuable feature by both the Enterprise Ethereum
community and outside. Users of blockchain and blockchain-inspired platforms want to make
use of data and functionality on heterogenous platforms.

The goals for cross-chain interoperability in this specification are to:

Describe the layers of interoperability that are relevant to Enterprise Ethereum blockchains.

Enable data consumption between different blockchains without using a trusted
intermediary.

Allow transaction execution across blockchains without a trusted intermediary.

This section is non-normative.

Synchronization and disaster recovery refers to how nodes in a blockchain behave when
connecting for the first time or reconnecting.

Various techniques can help do this efficiently. For an Enterprise Ethereum blockchain with few
copies, off-chain backup information can be important to ensure the long-term existence of the
information stored. A common backup format helps increase client interoperability.

The following is a list of terms defined in this Specification.

account permissioning

capability protocols

client requirements

12. Synchronization and Disaster Recovery

A. Additional Information

A.1 Defined Terms

consensus

consensus algorithm

consortium network

cross-chain interoperability

ÐApps

DEVp2p

Enterprise Ethereum

Enterprise Ethereum blockchains

Enterprise Ethereum client

Ethereum account

Ethereum JSON-RPC API

Ethereum MainNet

Ethereum Name Service

Ethereum Virtual Machine

experimental

finality

formal verification

gas

genesis block

groups

hard fork

hard fork block

integration libraries

inter-chain mediators

interoperate

layer 1

layer 2

metadata

network configuration

node

node permissioning

The following is a list of events, functions, and parameters defined in this Specification:

AccountPermissionsUpdated event

node permissioning

off-chain trusted computing

organization

payload data

permissioning

permissioning contracts

permissioning enforcement

permissioning management

precompiled contract

privacy group

private state

private transaction

private transaction manager

protocol requirements

Public Ethereum

restricted private transactions

roles

smart contract languages

smart contracts

suborganization

transaction

unrestricted private transactions

user

wallets

zero-knowledge proofs

A.2 Defined Events, Functions, and Network Configuration Parameters

addsPermissions parameter in the AccountPermissionsUpdated and
NodePermissionsUpdated events

addsRestrictions parameter in the AccountPermissionsUpdated and
NodePermissionsUpdated events

connectionAllowed function

eea_sendRawTransaction function

eea_sendRawTransactionAsync function

eea_sendTransaction function

eea_sendTransactionAsync function

maxCodeSize parameter in the network configuration

nodePermissionContract parameter in the network configuration

NodePermissionsUpdated event

privacyGroupId parameter in the eea_sendTransactionAsync and
eea_sendTransaction functions

privateFor parameter in the eea_sendTransactionAsync and eea_sendTransaction
functions

privateFrom parameter in the eea_sendTransactionAsync and
eea_sendTransaction functions

restriction parameter in the eea_sendTransactionAsync and
eea_sendTransaction functions

transactionAllowed function

transactionPermissionContract parameter in the network configuration.

This section provides a summary of all requirements in this Specification.

[P] SMRT-030: Enterprise Ethereum clients MUST support smart contracts of at least 24,576
bytes in size.

[P] SMRT-040: Enterprise Ethereum clients MUST read and enforce a size limit for transactions
that deploy smart contracts from the maxCodeSize parameter in the network configuration,
specified as a number of kilobytes as defined in the section below.

[P] SMRT-060: Enterprise Ethereum clients MUST read and enforce a size limit for transactions
that deploy smart contracts from the maxCodeSize parameter in the network configuration,

A.3 Summary of Requirements

file:///Users/chaals/Documents/GitHub/client-spec/docs/sec-maxcodesize

specified as a javascript object as defined in the section below.

[P] JRPC-010: Enterprise Ethereum clients MUST provide support for the following Ethereum
JSON-RPC API methods:

net_version

net_peerCount

net_listening

eth_protocolVersion

eth_syncing

eth_coinbase

eth_hashrate

eth_gasPrice

eth_accounts

eth_blockNumber

eth_getBalance

eth_getStorageAt

eth_getTransactionCount

eth_getBlockTransactionCountByHash

eth_getBlockTransactionCountByNumber

eth_getCode

eth_sendRawTransaction

eth_call

eth_estimateGas

eth_getBlockByHash

eth_getBlockByNumber

eth_getTransactionByHash

eth_getTransactionByBlockHashAndIndex

eth_getTransactionByBlockNumberAndIndex

eth_getTransactionReceipt

eth_getUncleByBlockHashAndIndex

eth_getUncleByBlockNumberAndIndex

file:///Users/chaals/Documents/GitHub/client-spec/docs/sec-maxcodesize

eth_getLogs.

[P] JRPC-007: Enterprise Ethereum clients SHOULD implement [JSON-RPC-API] methods to
be backward compatible with the definitions given in version f4e6248 of the Ethereum JSON-
RPC API reference [JSON-RPC-API-vf4e6248], unless breaking changes were made and widely
implemented for the health of the ecosystem. For example, to fix a major security or privacy
problem.

[C] JRPC-015: Enterprise Ethereum clients MUST provide the capability to accept and respond
to JSON-RPC method calls over a websocket interface.

[C] JRPC-040: Enterprise Ethereum clients MUST provide an implementation of the
debug_traceTransaction method [debug-traceTransaction] from the Go Ethereum
Management API.

[C] JRPC-050: Enterprise Ethereum clients MUST implement the [JSON-RPC-PUB-SUB] API.

[P] JRPC-070: Enterprise Ethereum clients implementing additional nonstandard subscription
types for the [JSON-RPC-PUB-SUB] API MUST prefix their subscription type names with a
namespace prefix other than eea_.

[P] JRPC-080: The [JSON-RPC] method name prefix eea_ MUST be reserved for future use for
RPC methods specific to the EEA.

[P] JRPC-020: Enterprise Ethereum clients MUST implement at least one of the following
extensions to create private transaction types defined in the Section 7.1.4 Private Transactions:

eea_sendTransaction, or

eea_sendRawTransaction.

[P] JRPC-025: Enterprise Ethereum clients MAY implement the following experimental
extensions to create private transaction types defined in the Section 7.1.4 Private Transactions:

eea_sendTransactionAsync and

eea_sendRawTransactionAsync.

[P] JRPC-030: The eea_sendTransactionAsync, eea_sendTransaction,
eea_sendRawTransactionAsync, and eea_sendRawTransaction methods MUST respond
with a [JSON-RPC] error response when an unimplemented private transaction type is requested.
The error response MUST have the -50100 and the Unimplemented private
transaction type.

[P] PERM-200: Enterprise Ethereum clients MUST call the connectionAllowed function, as
specified in Section 6.3.3.3.1 Node Permissioning Functions, or if it implements PERM-220 and

code message

PERM-230, MAY use cached information to determine whether a connection with another node is
permitted, and any restrictions to be placed on that connection.

[P] PERM-210: When checking the response to connectionAllowed, if any unknown
permissioning bits are found to be zero, Enterprise Ethereum clients MUST reject the connection.

[P] PERM-220: On receipt of a NodePermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST:

Purge all cached results from previous calls to connectionAllowed where the result
returned was true.

Close any network connections that are no longer permitted.

Impose newly added restrictions on any network connections that have had restrictions
added.

[P] PERM-230: On receipt of a NodePermissionsUpdated event containing an
addsPermissions property with the value true, Enterprise Ethereum clients MUST:

Purge all cached results from previous calls to connectionAllowed where the result
returned was false.

Check whether existing network connections have had their restrictions lifted and allow
future actions that are now permitted.

[P] PERM-240: Enterprise Ethereum clients MUST NOT accept a transaction unless either:

1. The client calls the transactionAllowed function, as specified in Section 6.3.3.4.1
Account Permissioning Function, for the transaction, with worldstate as at the block's
parent, and

the function returns a value of true;

or

2. The client has previously called the transactionAllowed function, as specified in
Section Account permissioning function, for the transaction, with worldstate as at the
block's parent, and

The function returned a value of true, and

the client has not subsequently received an AccountPermissionsUpdated event
containing an addsRestrictions property with the value true.

[P] PERM-250: On receipt of an AccountPermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST:

Purge all cached results from previous calls to transactionAllowed where the result
returned was true.

Impose newly added restrictions on any accounts that have had restrictions added.

[P] PERM-260: On receipt of an AccountPermissionsUpdated event containing an
addsPermissions property with the value true, Enterprise Ethereum clients MUST:

Purge all cached results from previous calls to transactionAllowed where the result
returned was false.

Allow future transactions from accounts that are now permitted.

[P] PRIV-010: Enterprise Ethereum clients MUST support one of restricted private transactions
or unrestricted private transactions.

If implementing restricted private transactions:

[P] PRIV-020: Enterprise Ethereum clients MUST encrypt payload data when stored in
restricted private transactions.

[P] PRIV-030: Enterprise Ethereum clients MUST encrypt payload data when in transit in
restricted private transactions.

[P] PRIV-040: Enterprise Ethereum clients MAY encrypt metadata when stored in restricted
private transactions.

[P] PRIV-050: Enterprise Ethereum clients MAY encrypt metadata when in transit in
restricted private transactions.

[P] PRIV-060: Nodes that relay a restricted private transaction, but are not party to that
transaction, MUST NOT store the payload data.

[P] PRIV-070: Nodes that relay a restricted private transaction, but are not party to that
transaction, SHOULD NOT store the metadata.

[P] PRIV-080: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or
eea_sendRawTransaction methods (see Section 6.3.2 Extensions to the JSON-RPC API)
with the restriction parameter set to restricted, MUST result in a restricted private
transaction.

If implementing unrestricted private transactions:

[P] PRIV-090: Enterprise Ethereum clients SHOULD encrypt the recipient identity when
stored in unrestricted private transactions.

[P] PRIV-100: Enterprise Ethereum clients SHOULD encrypt the sender identity when
stored in unrestricted private transactions.

[P] PRIV-110: Enterprise Ethereum clients SHOULD encrypt the payload data when stored
in unrestricted private transactions.

[P] PRIV-120: Enterprise Ethereum clients MUST encrypt payload data when in transit in
unrestricted private transactions.

[P] PRIV-130: Enterprise Ethereum clients MAY encrypt metadata when stored in
unrestricted private transactions.

[P] PRIV-140: Enterprise Ethereum clients MAY encrypt metadata when in transit in
unrestricted private transactions.

[P] PRIV-150: Nodes that relay an unrestricted private transaction, but are not party to that
transaction, MAY store the payload data.

[P] PRIV-160: Nodes that relay an unrestricted private transaction, but are not party to that
transaction, MAY store the metadata.

[P] PRIV-170: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or
eea_sendRawTransaction methods (see Section 6.3.2 Extensions to the JSON-RPC API)
with the restriction parameter set to unrestricted MUST result in an unrestricted
private transaction.

[P] PRIV-210: Enterprise Ethereum clients implementing unrestricted private transactions
MUST provide the ability for nodes to achieve global consensus.

[P] PRIV-180: Enterprise Ethereum clients SHOULD be able to extend the set of parties privy to
a private transaction (or forward the private transaction in some way).

[P] PRIV-190: Enterprise Ethereum clients SHOULD provide the ability for nodes to achieve
consensus on their mutually private transactions.

[C] NODE-010: Enterprise Ethereum implementations MUST provide the ability to specify at
startup a list of static peer nodes to establish peer-to-peer connections with.

[C] NODE-020: Enterprise Ethereum clients MUST provide the ability to enable or disable peer-
to-peer node discovery.

[P] NODE-030: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of
the nodes permitted to connect to a node.

[P] NODE-080: Enterprise Ethereum clients MUST provide the ability to specify node identities
in a way aligned with the concept of groups.

[P] NODE-090: Enterprise Ethereum clients SHOULD implement transaction ordering
identically to the ordering in Geth: "by Price and by Nonce" (ethereum/go-

https://github.com/ethereum/go-ethereum/blob/master/core/types/transaction.go

ethereum/core/types/transaction.go, lines 337-349, as of commit #50e3795).

[P] NODE-095: Enterprise Ethereum clients MUST specify explicitly and precisely in
documentation any transaction ordering logic that is different from that of Geth as recommended
in NODE-090.

[P] PART-010: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of
accounts that are permitted to transact with the blockchain.

[P] PART-015: Enterprise Ethereum clients MUST be able to verify that accounts are present on
the whitelist required by PART-010 when adding transactions from the account to a block, and
when verifying a received block containing transactions created by that account.

[P] STOR-040: Enterprise Ethereum clients SHOULD permit a smart contract operating on
private state to access private state created by other smart contracts involving the same parties to
the transaction.

[P] STOR-050: Enterprise Ethereum clients MUST NOT permit a smart contract operating on
private state to access private state created by other smart contracts involving different parties to
the transaction.

[P] STOR-070: If an Enterprise Ethereum client stores private state persistently, it SHOULD
protect the data using an Authenticated Encryption with Additional Data (AEAD) algorithm,
such as one described in [RFC5116].

[P] EXEC-010: Enterprise Ethereum clients MUST provide a smart contract execution
environment implementing the public Ethereum EVM opcode set [EVM-Opcodes] that are
compatible with the Istanbul hard fork [EIP-1679].

[P] EXEC-020: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] MUST register the opcode and
the name of the Enterprise Ethereum client in the [EEA-extended-opcode-registry].

[P] EXEC-025: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] SHOULD register a
description of the new functionality, and a URL for a complete specification and test suites in the
[EEA-extended-opcode-registry], and create an EIP describing the new opcode.

[P] EXEC-030: Enterprise Ethereum clients SHOULD support the ability to synchronize their
public state with the public state held by other public Ethereum nodes.

[C] EXEC-050: Enterprise Ethereum clients that support off-chain trusted computing MUST
implement the precompiled function for Worker Attestation [TC-Precompile] defined by the EEA
Offchain / Trusted Computing group.

https://github.com/ethereum/go-ethereum/blob/master/core/types/transaction.go
https://github.com/EntEthAlliance/trusted-computing/blob/master/docs/TC-Precompiled-Contract-EEP.md

[C] EXEC-060: Enterprise Ethereum clients MAY support configurable alternative cryptographic
curves as encryption options for Enterprise Ethereum blockchains.

[P] FINL-010: When a deterministic consensus algorithm is used, Enterprise Ethereum clients
SHOULD treat transactions as final after a defined interval or event. For example, after a defined
time period has elapsed, or after a defined number of blocks were created since the transaction
was included in a block.

[P] CONS-050: Enterprise Ethereum clients MAY implement multiple consensus algorithms.

[P] CONS-093: Enterprise Ethereum clients MUST support the Clique, Proof of Authority
consensus algorithm [EIP-225].

[P] CONS-110: Enterprise Ethereum clients MUST provide the ability to specify the consensus
algorithms, through network configuration, to be used for each public blockchain and private
blockchain in use.

[P] PROT-010: Nodes MUST be identified and advertised using the Ethereum [enode] URL
format.

[P] PROT-015: Enterprise Ethereum clients MUST implement the [DEVp2p-Node-Discovery]
protocol.

[P] PROT-020: Enterprise Ethereum clients MUST use the [DEVp2p-Wire-Protocol] for
messaging between nodes to establish and maintain a communications channel for use by
capability protocols.

[P] PROT-050: To minimize the number of point-to-point connections needed between private
nodes, some private nodes SHOULD be capable of relaying private transaction data to multiple
other private nodes.

[P] PROT-060: Enterprise Ethereum clients SHOULD implement the [Whisper-protocol].

[P] PROT-070: Enterprise Ethereum clients MUST interpret the parameters defined in Section
A.2 Defined Events, Functions, and Network Configuration Parameters for network configuration
when found in the genesis file.

[P] XCLI-001: Enterprise Ethereum clients MUST implement [EIP-155] (included in the
Spurious Dragon hard fork) to introduce chain_id into transaction signing.

[P] XCLI-002: Enterprise Ethereum clients MUST implement [EIP-658] (included in the
Byzantium hard fork) to embed the transaction status code in receipts.

[P] XCLI-020: Enterprise Ethereum clients MAY extend the public Ethereum APIs. To maintain
compatibility, Enterprise Ethereum clients SHOULD ensure these new features are a superset of

the public Ethereum APIs.

[P] XCLI-030: Enterprise Ethereum clients MUST implement the gas mechanism specified in
the [Ethereum-Yellow-Paper].

[P] XCLI-035: Enterprise Ethereum clients MUST implement the same gas cost per opcode used
in the main net's Istanbul hard fork. [EIP-1679].

[P] XCLI-040: Enterprise Ethereum clients MUST function correctly when the Gas price is set to
zero.

[P] XCLI-050: Enterprise Ethereum clients MUST implement the eight precompiled contracts
defined in Appendix E of the [Ethereum-Yellow-Paper]:

ecrecover

sha256hash

ripemd160hash

dataCopy

bigModExp

bn256Add

bn256ScalarMul

bn256Pairing.

[P] XCLI-051: Enterprise Ethereum clients MUST implement the precompiled contract for
[RFC7693] Blake 2b F compression defined in [EIP-152]

[P] XCLI-055: Enterprise Ethereum clients MUST register precompiled contracts following the
mechanisms defined by [EIP-1352].

[P] XCLI-060: Enterprise Ethereum clients MUST support the Contract Application Binary
Interface ([ABI]) for interacting with smart contracts.

[P] XCLI-070: Enterprise Ethereum clients MUST support Recursive Length Prefix ([RLP])
encoding for binary data.

The EEA acknowledges and thanks the many people who contributed to the development of this
version of the specification. Please advise us of any errors or omissions.

A.4 Acknowledgments

This version builds on the work of all who contributed to previous versions of the Enterprise
Ethereum Client Specification, whom we hope are all acknowledged in those documents. We
apologize to anyone whose name was left off the list. Please advise us at
https://entethalliance.org/contact/ of any errors or omissions.

We would also like to thank former editors David Hyland-Wood (version 1) and Daniel Burnett
(version 2), and former EEA Technical Director, the late and missed Clifton Barber, for their
work on previous versions of this specification.

Enterprise Ethereum is built on top of Ethereum, and we are grateful to the entire community
who develops Ethereum, for their work and their ongoing collaboration to helps us maintain as
much compatibility as possible with the Ethereum ecosystem.

This section outlines substantive changes made to the specification since version 4:

Add XCLI-035, to require the same gas price for opcodes as main net

Add SMRT-060 and define a javascript object format for maxCodeSize, allowing for a
record of changes in limits.

add NODE-095 to require documentation of any differences from the recommended order
of transactions.

add requirement JRPC-025 allowing implementation of the experimental asynchronous
methods, and describe the feedback sought from the experiment.

Add requirement XCLI-051 to implement Blake2b compression as defined by [RFC7693]
using the precompiled contract [EIP-152].

Add requirement XCLI-051 to implement Blake2b compression as defined by [RFC7693]
using the precompiled contract [EIP-152].

Add requirements XCLI-001 and XCLI-002 to require implementing improvements made
in public Ethereum clients.

Update PERM-240 to clarify that clients can only recognise a transaction as valid if they
have a currently valid result from calling transactionAllowed.

A.5 Changes

A.5.1 New requirements

A.5.2 Changed Requirements

https://entethalliance.org/resources/
https://entethalliance.org/contact/
file:///Users/chaals/Documents/GitHub/client-spec/docs/req-smrt-060

Adjust EXEC-050. Support for Offchain/ Trusted computing remains optional, but clients
that do it must implement the Offchain/Trusted Compute TF Precompile contract for
Worker Attestation.

Update NODE-090 to recommend transaction order be determined by price and nonce

Update requirement JRPC-020 to require at least one synchronous method to create private
transactions

Update SMRT-040 to specify that the maxCodeSize network configuration parameter
provides the size limit, in kilobytes, for smart transaction code.

Update EXEC-010 to require up-to-date EVMs.

Clarify PERM-220, PERM-230, PERM-250, and PERM-260.

Remove references to sidechains in requirement CONS-050 and requirement CONS-110 as
sidechains are just a form of private blockchains which are already addressed in the spec.

Moved text dealing with spam prevention to the Security Considerations.

Update JRPC-007 to refer to latest version of the Ethereum JSON RPC API.

Remove requirement SMRT-050 following implementation experience.

Remove PERM-075, PART-070, PART-050 and PART-060 because they are more
appropriately covered by requirements in [EEA-chains].

Remove PART-055 an SPAM-010 as too vague to test, and unnecessary.

Replace requirement XCLI-005, PERM-020 with more detailed requirements.

Remove requirement CONS-030 as it is redundant with CONS-093.

Remove requirement STOR-030 as it is redundant with STOR-050.

Remove requirement ORCL-010, EXEC-040 and PROT-040 because they are not specific
to Enterprise Ethereum client software.

Note that similar sections in version 2, version 3, and version 4 describe the changes made to
each version.

The copyright in this document is owned by Enterprise Ethereum Alliance Inc. (“EEA” or
“Enterprise Ethereum Alliance”).

A.5.3 Removed requirements

A.6 Legal Notice

https://entethalliance.org/wp-content/uploads/2019/05/EEA_Enterprise_Ethereum_Client_Specification_V3.pdf
https://entethalliance.org/wp-content/uploads/2019/05/EEA_Enterprise_Ethereum_Client_Specification_V4.pdf

No modifications, edits or changes to the information in this document are permitted. Subject to
the terms and conditions described herein, this document may be duplicated for internal use,
provided that all copies contain all proprietary notices and disclaimers included herein. Except as
otherwise provided herein, no license, express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

Use of this document and any related intellectual property incorporated herein, is also governed
by the Bylaws, Intellectual Property Rights Policy and other governing documents and policies
of EEA and is subject to the disclaimers and limitations described below.

No use or display of any of the following names or marks "Enterprise Ethereum Alliance", the
acronym "EEA", the EEA logo, or any combination thereof, to claim compliance with or
conformance to this document (or similar statements) is permitted absent EEA membership and
express written permission from the EEA. The EEA is in process of developing a compliance
testing and certification program only for the EEA members in good standing, which it targets to
launch towards the end of 2020.

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY
WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE, TRADE
PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE. EEA DOES NOT WARRANT
THAT THIS DOCUMENT IS COMPLETE OR WITHOUT ERROR AND DISCLAIMS ANY
WARRANTIES TO THE CONTRARY.

Each user of this document hereby acknowledges that sofftware or products implementing the
technology specified in this document ("EEA-Compliant Products") may be subject to various
regulatory controls under the laws and regulations of various governments worldwide. Such laws
and regulatory controls may govern, among other things, the combination, operation, use,
implementation and distribution of EEA-Compliant Products. Examples of such laws and
regulatory controls include, but are not limited to, airline regulatory controls,
telecommunications regulations, finance industry and security regulations, technology transfer
controls, health and safety and other types of regulations. Each user of this document is solely
responsible for the compliance by their EEA-Compliant Products with any such laws and
regulations and for obtaining any and all required authorizations, permits, or licenses for their
EEA-Compliant Products related to such regulations within the applicable jurisdictions. Each
user of this document acknowledges that nothing in this document or the relevant specification
provides any information or assistance in connection with securing such compliance,
authorizations or licenses. NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES
WHATSOEVER REGARDING THE APPLICABILITY OR NON-APPLICABILITY OF ANY

SUCH LAWS OR REGULATIONS OR THE SUITABILITY OR NON-SUITABILITY OF ANY
SUCH PRODUCT OR SERVICE FOR USE IN ANY JURISDICTION.

EEA has not investigated or made an independent determination regarding title or non-
infringement of any technologies that may be incorporated, described or referenced in this
document. Use of this document or implementation of any technologies described or referenced
herein may therefore infringe undisclosed third-party patent rights or other intellectual property
rights. The user is solely responsible for making all assessments relating to title and non-
infringement of any technology, standard, or specification referenced in this document and for
obtaining appropriate authorization to use such technologies, standards, and specifications,
including through the payment of any required license fees.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR
NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR
SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT.

IN NO EVENT SHALL EEA OR ANY OF ITS MEMBERS BE LIABLE TO THE USER OR
TO A THIRD PARTY FOR ANY CLAIM ARISING FROM OR RELATING TO THE USE OF
THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, A CLAIM THAT SUCH USE
INFRINGES A THIRD PARTY’S INTELLECTUAL PROPERTY RIGHTS OR THAT IT FAILS
TO COMPLY WITH APPLICABLE LAWS OR REGULATIONS. BY USE OF THIS
DOCUMENT, THE USER WAIVES ANY SUCH CLAIM AGAINST EEA AND ITS
MEMBERS RELATING TO THE USE OF THIS DOCUMENT.

EEA reserves the right to adopt any changes or alterations to this document as it deems necessary
or appropriate without any notice. User is solely responsible for determining whether this
document has been superseded by a later version or a different document.

[ABI]
Contract ABI Specification. Ethereum Foundation. URL:
https://solidity.readthedocs.io/en/develop/abi-spec.html

[Byzantine-Fault-Tolerant]
Byzantine Fault Tolerant. URL: https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

[debug-traceTransaction]
debug_traceTransaction. URL: https://github.com/ethereum/go-
ethereum/wiki/Management-APIs

B. References

B.1 Normative references

https://solidity.readthedocs.io/en/develop/abi-spec.html
https://solidity.readthedocs.io/en/develop/abi-spec.html
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://github.com/ethereum/go-ethereum/wiki/Management-APIs
https://github.com/ethereum/go-ethereum/wiki/Management-APIs

[DEVp2p-Node-Discovery]
Node Discovery Protocol. URL: https://github.com/ethereum/devp2p/blob/master/rlpx.md

[DEVp2p-Wire-Protocol]
ÐΞVp2p Wire Protocol. URL: https://github.com/ethereum/devp2p/blob/master/caps/eth.md

[EEA-chains]
Enterprise Ethereum Alliance Permissioned Blockchains specification. Enterprise Ethereum
Alliance, Inc. URL: https://entethalliance.org/wp-
content/uploads/2020/05/EEA_Enterprise_Ethereum_Chain_Specification_V1.pdf

[EEA-extended-opcode-registry]
EEA EVM opcode extensions registry. Enterprise Ethereum Alliance, Inc. URL:
http://entethalliance.github.io/client-spec/extended-opcodes-registry.html

[EIP-1352]
Specify restricted address range for precompiles/system contracts. Ethereum Foundation.
URL: https://eips.ethereum.org/EIPS/eip-1352

[EIP-152]
BLAKE2b 'F' Compression Function Precompile. Ethereum Foundation. URL:
https://eips.ethereum.org/EIPS/eip-152

[EIP-155]
Simple Relay Attack Protection. Ethereum Foundation. URL:
https://eips.ethereum.org/EIPS/eip-155

[EIP-1679]
Hardfork Meta: Istanbul. Ethereum Foundation. URL: https://eips.ethereum.org/EIPS/eip-
1679

[EIP-225]
Clique proof-of-authority consensus protocol. Ethereum Foundation. URL:
https://eips.ethereum.org/EIPS/eip-225

[EIP-648]
Easy Parallelizability. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/648

[EIP-650]
Istanbul Byzantine Fault Tolerance. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/650

[EIP-658]
Embedding Transaction Status Code in Receipts. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/658

[enode]
Ethereum enode URL format. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/enode-url-format

[Ethereum-Wire-Protocol]

https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://entethalliance.org/wp-content/uploads/2020/05/EEA_Enterprise_Ethereum_Chain_Specification_V1.pdf
https://entethalliance.org/wp-content/uploads/2020/05/EEA_Enterprise_Ethereum_Chain_Specification_V1.pdf
http://entethalliance.github.io/client-spec/extended-opcodes-registry.html
http://entethalliance.github.io/client-spec/extended-opcodes-registry.html
https://eips.ethereum.org/EIPS/eip-1352
https://eips.ethereum.org/EIPS/eip-1352
https://eips.ethereum.org/EIPS/eip-152
https://eips.ethereum.org/EIPS/eip-152
https://eips.ethereum.org/EIPS/eip-155
https://eips.ethereum.org/EIPS/eip-155
https://eips.ethereum.org/EIPS/eip-1679
https://eips.ethereum.org/EIPS/eip-1679
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225
https://github.com/ethereum/EIPs/issues/648
https://github.com/ethereum/EIPs/issues/648
https://github.com/ethereum/EIPs/issues/650
https://github.com/ethereum/EIPs/issues/650
https://github.com/ethereum/EIPs/issues/658
https://github.com/ethereum/EIPs/issues/658
https://github.com/ethereum/wiki/wiki/enode-url-format
https://github.com/ethereum/wiki/wiki/enode-url-format

Ethereum Wire Protocol. URL: https://github.com/ethereum/wiki/wiki/Ethereum-Wire-
Protocol

[Ethereum-Yellow-Paper]
Ethereum: A Secure Decentralized Generalized Transaction Ledger. Dr. Gavin Wood. URL:
https://ethereum.github.io/yellowpaper/paper.pdf

[EVM-Opcodes]
Ethereum Virtual Machine (EVM) Opcodes and Instruction Reference. URL:
https://github.com/trailofbits/evm-opcodes

[eWASM]
Ethereum-flavored WebAssembly. URL: https://github.com/ewasm/design

[GDPR]
European Union General Data Protection Regulation. European Union. URL: https://eur-
lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679

[JSON]
The application/json Media Type for JavaScript Object Notation (JSON). D. Crockford.
IETF. July 2006. Informational. URL: https://tools.ietf.org/html/rfc4627

[JSON-RPC]
JavaScript Object Notation - Remote Procedure Call. JSON-RPC Working Group. URL:
http://www.jsonrpc.org/specification

[JSON-RPC-API]
Ethereum JSON-RPC API. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/JSON-RPC

[JSON-RPC-API-e8e0771]
Ethereum JSON-RPC API. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/JSON-
RPC/e8e0771b9f3677693649d945956bc60e886ceb2b

[JSON-RPC-PUB-SUB]
RPC PUB-SUB. Ethereum Foundation. URL: https://github.com/ethereum/go-
ethereum/wiki/RPC-PUB-SUB

[LLL]
LLL Introduction. Ben Edgington. 2017. URL: http://lll-
docs.readthedocs.io/en/latest/lll_introduction.html

[Nethereum]
Nethereum .NET Integration Library. Nethereum Open Source Community. URL:
https://nethereum.com

[Plasma]
Plasma: Scalable Autonomous Smart Contracts. Joseph Poon and Vitalik Buterin. August
2017. URL: https://plasma.io/plasma.pdf

[PSD2]

https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/trailofbits/evm-opcodes
https://github.com/trailofbits/evm-opcodes
https://github.com/ewasm/design
https://github.com/ewasm/design
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC/e8e0771b9f3677693649d945956bc60e886ceb2b
https://github.com/ethereum/wiki/wiki/JSON-RPC/e8e0771b9f3677693649d945956bc60e886ceb2b
https://github.com/ethereum/go-ethereum/wiki/RPC-PUB-SUB
https://github.com/ethereum/go-ethereum/wiki/RPC-PUB-SUB
http://lll-docs.readthedocs.io/en/latest/lll_introduction.html
http://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://nethereum.com/
https://nethereum.com/
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf

European Union Personal Service Directive. European Union. URL:
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC5116]
An Interface and Algorithms for Authenticated Encryption. D. McGrew. IETF. January
2008. Proposed Standard. URL: https://tools.ietf.org/html/rfc5116

[RFC7693]
The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC). M-J.
Saarinen, Ed.; J-P. Aumasson. IETF. November 2015. Informational. URL:
https://tools.ietf.org/html/rfc7693

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://tools.ietf.org/html/rfc8174

[RLP]
Recursive Length Prefix. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/RLP

[sharding]
Sharding FAQs. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/Sharding-FAQs

[Solidity]
The Solidity Contract-Oriented Programming Language. Ethereum Foundation. URL:
https://github.com/ethereum/solidity

[state-channels]
Counterfactual: Generalized State Channels. URL: https://counterfactual.com/statechannels

[TC-Precompile]
Trusted Compute Precompiled Smart Contract. EEA. URL:
https://github.com/EntEthAlliance/trusted-computing/blob/master/docs/TC-Precompiled-
Contract-EEP.md

[web3.js]
Ethereum JavaScript API. Ethereum Foundation. URL:
https://github.com/ethereum/web3.js

[web3j]
web3j Lightweight Ethereum Java and Android Integration Library. Conor Svensson. URL:
https://web3j.io

[Whisper-protocol]
Whisper. Ethereum Foundation. URL: https://github.com/ethereum/wiki/wiki/Whisper

[ZK-STARKS]

https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc7693
https://tools.ietf.org/html/rfc7693
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8174
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://counterfactual.com/statechannels
https://counterfactual.com/statechannels
https://github.com/EntEthAlliance/trusted-computing/blob/master/docs/TC-Precompiled-Contract-EEP.md
https://github.com/EntEthAlliance/trusted-computing/blob/master/docs/TC-Precompiled-Contract-EEP.md
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://web3j.io/
https://web3j.io/
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper

Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive. 2018-03-16. URL: https://eprint.iacr.org/2018/046.pdf

[ZKP]
Zero Knowledge Proof. Wikipedia. URL: https://en.wikipedia.org/wiki/Zero-
knowledge_proof

[EEA-implementation-guide]
Enterprise Ethereum Alliance Implementation Guide (Work in Progress). Enterprise
Ethereum Alliance, Inc. URL: https://entethalliance.github.io/client-spec/implementing.html

[EEA-OC]
Enterprise Ethereum Alliance Off-Chain Trusted Compute Specification v1.1. Enterprise
Ethereum Alliance, Inc. URL: https://entethalliance.org/wp-
content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf

[EIPs]
Ethereum Improvement Proposals. Ethereum Foundation. URL: https://eips.ethereum.org/

[ERC-20]
Ethereum Improvement Proposal 20 - Standard Interface for Tokens. Ethereum Foundation.
URL: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

[ERC-223]
Ethereum Improvement Proposal 223 - Token Standard. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/223

[ERC-621]
Ethereum Improvement Proposal 621 - Token Standard Extension for Increasing &
Decreasing Supply. Ethereum Foundation. URL: https://github.com/ethereum/EIPs/pull/621

[ERC-721]
Ethereum Improvement Proposal 721 - Non-fungible Token Standard. Ethereum Foundation.
URL: https://github.com/ethereum/eips/issues/721

[ERC-827]
Ethereum Improvement Proposal 827 - Extension to ERC-20. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/827

[geth-repo]
Go-Ethereum. URL: https://github.com/ethereum/go-ethereum/

[implementation-code-in-Golang]
implementation code in Golang. URL: https://github.com/ethereum/go-
ethereum/blob/master/core/vm/contracts.go#L50-L360

[Layer2-Scaling-Solutions]

B.2 Informative references

https://eprint.iacr.org/2018/046.pdf
https://eprint.iacr.org/2018/046.pdf
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://entethalliance.github.io/client-spec/implementing.html
https://entethalliance.github.io/client-spec/implementing.html
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://eips.ethereum.org/
https://eips.ethereum.org/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/pull/621
https://github.com/ethereum/EIPs/pull/621
https://github.com/ethereum/eips/issues/721
https://github.com/ethereum/eips/issues/721
https://github.com/ethereum/EIPs/issues/827
https://github.com/ethereum/EIPs/issues/827
https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/go-ethereum/blob/master/core/vm/contracts.go#L50-L360
https://github.com/ethereum/go-ethereum/blob/master/core/vm/contracts.go#L50-L360

Making Sense of Ethereum's Layer 2 Scaling Solutions: State Channels, Plasma, and
Truebit. Josh Stark. February 2018. URL: https://medium.com/l4-media/making-sense-of-
ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4

[PoET]
Proof of Elapsed Time 1.0 Specification. Intel Corporation. 2015-2017. URL:
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html

[RAFT]
Raft-based Consensus for Ethereum/Quorum. J.P. Morgan. URL:
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md

[USECASES]
Use cases for Enterprise Ethereum Clients (EDITORS' DRAFT WORK IN PROGRESS).
EEA Inc. URL: https://entethalliance.github.io/client-spec/usecases.html

[WP-ABAC]
Attribute-based access control. Wikipedia. URL: https://en.wikipedia.org/wiki/Attribute-
based_access_control

[WP-RBAC]
Role-based access control. URL: https://en.wikipedia.org/wiki/Role-based_access_control

↑

https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html#
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md
https://entethalliance.github.io/client-spec/usecases.html
https://entethalliance.github.io/client-spec/usecases.html
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control

