
 

 

EEA CIW - Crosschain Security Guidelines 
Version 1.0 
Crosschain Interoperability WG - Working Draft 

24 September 2021 

 

Editors: 

• Weijia Zhang, Wanchain 
• Peter Robinson, ConsenSys 
• Aiman Baharna, Clearmatics 

Related work: 

[eeaciw-crosschainidentification-v1.0] EEA CIW - Crosschain Identification Specification 
Version 1.0. Edited by Weijia Zhang and Peter Robinson. 14 December 2020. EEA CIW. 
https://entethalliance.github.io/crosschain-interoperability/crosschainid.html . Latest stage: 
https://entethalliance.github.io/crosschain-interoperability/crosschainid.html . 

Status: 

This section describes the status of this document at the time of its publication.  

This is a draft document and may be updated, replaced or obsoleted by other documents at 
any time. It is inappropriate to cite this document as other than work in progress.  
Please note that Working Drafts published by EEA working groups are not endorsed by the 
EEA. 

At the time of publication, no additional substantive issues or modifications are expected but 
readers are advised that proposed changes might result in alterations to this document.  
The Crosschain Interoperability Working Group intends to request publication of the final 
version of this document in Q4 2021. 

Citation format: 

When referencing this document, the following citation format should be used:  



[eeaciw-crosschainsecurity-v1.0] EEA CIW - Crosschain Security Guidelines Version 1.0. 
Edited by Weijia Zhang, Peter Robinson and Aiman Baharna. 24 September 2021. EEA 
CIW. https://entethalliance.github.io/crosschain-
interoperability/crosschainsecurityguidelines.html . Latest stage: 
https://entethalliance.github.io/crosschain-interoperability/crosschainsecurityguidelines.html . 

 

Notices 
Copyright © EEA Inc, 2021. This document is made available under the terms of the Apache 
license version 2.0. 

 

Table of Contents 
• Introduction 
• Crosschain Security Considerations 

o Blockchain Layer 
o Consensus Layer 
o Crosschain Relayers 
o Smart Contracts Layer 
o Oracle Layer Security 
o Web Services 
o Administrator Account 
o Securing Management Accounts with MPC 
o Taking and Slashing 

• Acknowledgements 

 

Introduction 
Security is always the most critical part of software systems and platforms. This is even more 
the case in blockchain for the following reasons: 

• Decentralized nature of blockchain: Any code written and deployed to a blockchain 
will be run on many blockchain nodes. Anyone can access and run your blockchain 
code. 

• Constraints of patches and upgradability: Due to the immutability of blockchains, 
smart contracts deployed to blockchains cannot be modified. This increases the 
difficulty for upgrading decentralized applications. When security flaws are detected 
in blockchain applications, the cost of patching the applications is high. Poorly 
designed contracts may be impossible to upgrade.  

• Trustless and permissionless environment: For public blockchains, both the 
blockchain client nodes and decentralized applications are open to global participants. 



There is no centralized authority to check the qualifications of participants. There is 
no security perimeter to block bad actors from participating. 

• Privacy and anonymous nature of blockchain: Blockchain users can remain pseudo 
anonymous. Smart contract functions do not have a way to check the profile of the 
users. Hackers can carry out an attack, stealing the assets, and remain unidentified.  

• High value impact on business: Smart contracts normally have a small footprint. 
Bigger projects might have in the order of thousands of lines of code while other 
project may only have hundreds lines of codes. These small pieces of code manage 
high value crypto assets. A single attack can bring catastrophic results to a 
decentralized application. Some decentralized applications have suffered huge losses 
due to simple errors in smart contracts.  

Recently, there has been a huge increase in attacks on crosschain bridges. Hackers exploit 
vulnerabilities in smart contracts, Remote Procedure Calls (RPC), wallets, private key 
managers, and source code repositories. Since a crosschain bridge is a holistic system that 
connects a source chain with a target chain, the attacks can target the source chain, the target 
chain, or the bridge connecting them. While there are many security guides and best practices 
for securing blockchains and decentralized applications in a single blockchain system, 
crosschain security is not as well-served. This guideline fills that gap by describing the areas 
and factors to consider for crosschain bridges. 

Crosschain Security Considerations 
To better explain crosschain security factors, we use the Ethereum architecture diagram that 
was developed by Enterprise Ethereum Alliance as shown in Figure 1. 

 

Figure 1: Ethereum architecture with crosschain interoperability components  

ENTERPRISE ETHEREUM ARCHITECTURE STACK
APPLICATION

ÐAPPS APPLICATIONS EXPLORERS, MONITORING & BUSINESS INTELLIGENCE CROSSCHAIN ÐAPP

INFRA CONTRACTS & 
STANDARDS

TOKEN STANDARDS IDENTITY SERVICES ETHEREUM NAME SERVICE PERMISSIONING CONTRACTS CROSSCHAIN SMART CONTRACT

SMART CONTRACT 
TOOLS SMART CONTRACT LANGUAGES DEVELOPER TOOLS SECURITY ANALYSIS AND AUDITS FORMAL VERIFICATION MULTICHAIN CONTRACT TOOLS

TOOLING
CREDENTIAL 
MANAGEMENT WALLETS KEY MANAGEMENT HARDWARE SECURITY MANAGER MULTICHAIN IDENTITY

INTEGRATION & 
DEPLOYMENT TOOLS INTEGRATION LIBRARIES ENTERPRISE MANAGEMENT SYSTEMS CROSSCHAIN DEPLOYMENT

CLIENT INTERFACES / 
APIs JSON-RPC INTER-CHAIN

ENTERPRISE 3 P's

PRIVACY ON-CHAIN OFF-CHAIN / TRUSTED COMPUTE PRIVATE TRANSACTIONS PRIVACY ZONE

PERFORMANCE ON-CHAIN OPTIMIZATION OFF-CHAIN COMPUTING OFF-CHAIN / TRUSTED COMPUTE MANAGED FINALITY

PERMISSIONING ORGANIZATION REGISTRY CLIENT WHITELIST PERMISSION CHECKS ZONED PERMISSION

CORE BLOCKCHAIN

STORAGE/LEDGER ON-CHAIN PUBLIC STATE ON-CHAIN STORAGE OFF-CHAIN STORAGE ON-CHAIN PRIVATE STATE PARTITIONED STORAGE

EXECUTION EVM SYNC PRECOMPILED CONTRACTS TRUSTED COMPUTE CROSSCHAIN TRUST CROSSCHAIN ATOMIC TX

CONSENSUS PROOF OF WORK PROOF OF AUTHORITY BFT ALGORITHMS MIXED CONSENSUS

NETWORK

NETWORK PROTOCOL DEVP2P RESTRICTED PRIVATE TRANSACTION SHARING CHAIN IDENTITY

LEGEND Yellow Paper Public Ethereum Application Layer Enterprise Ethereum EEA Crosschain

All Yellow Paper, Public Ethereum, and Application Layer components may be extended for Enterprise Ethereum as required.
© 2018-2020 Enterprise Ethereum Alliance Inc. All rights reserved.



Blockchain Layer 

The crosschain operation should correctly discover and identify source and target 
blockchains. Today's blockchain identification of using ChainID is not adequate as any 
blockchain can assign a blockchain id to mimic another blockchain. There should be a 
mechanism to authenticate a blockchain through blockhash or blockchain data that cannot be 
altered. One way to do this is to use genesis blockchain hash as an identifier of a blockchain. 
Once a user specifies the source blockchain and target blockchain in the transaction, the 
relayers and dapps can verify blockchain id with the genesis blockchain hash. In the case of 
forked blockchain, the main chain and forked chain should be reviewed, and the forked chain 
can take the blockchain hash of the block when the forked chain happened. To ensure 
blockchain layer security for the crosschain operation, there should be a unique blockchain id 
defined. The blockchain id should be verifiable within the blockchain, the blockchain id can 
also be registered with a trusted source to include more metadata associated with the 
blockchain. Besides using a native blockhash to identify a blockchain, the blockchain id can 
also be expanded to include a checksum and other critical metadata to describe a blockchain. 
The other additional metadata can then be registered with a name service such as an 
Ethereum Registration Authority. Organizations such as Enterprise Ethereum Alliance can 
take the role of helping to ensure that blockchain identification, description, discovery, and 
registration are consistent with the specification for crosschain operations. 

Today, there are blockchains like Ethereum that have an open process for protocol 
development, which involves multiple stakeholders in consultation and reaching consensus 
about upcoming protocol changes. In contrast, other blockchain protocols may be controlled 
by a single entity, which gives this party a great deal of control over user funds, their tokens, 
and the smart contracts they can deploy and execute. This creates a single point of failure and 
increases the risk of adverse outcomes in crosschain operations. Also, attention needs to be 
directed towards the node software that powers the blockchain network. If there are multiple 
implementations of the blockchain node client, which are developed and released by different 
groups of programmers, using different programming languages and system libraries, and 
their usage is evenly distributed among miners and validators all across the world, then a 
failure in any one node client is less likely to affect the other clients. As a result, this makes 
the entire network more resilient to attacks and serious failures in any one client. Crosschain 
bridges can make use of multiple clients to ensure that operations are not disrupted in the 
event of a problem with the node software. 

Consensus layer 

When a crosschain bridge is built for a source chain and a target chain, the security of the 
consensus in its respective native chain needs to be considered. These security factors include 
who runs as miners for the native chains, what consensus algorithm is used for the 
blockchains, what finality does the consensus algorithm supply given the configuration, and 
what are the risks of blockchain rollbacks and forks. 

For some blockchains such as private or consortium blockchains, the validator nodes that 
mine blocks are validated and trusted, and therefore there is less chance for malicious actions 
from the validators. For public blockchain, the miner nodes are permissionless and security is 
guaranteed via proof of work (PoW) or proof of stake (PoS). It is important to note that for 
PoW consensus, malicious nodes that have large hashing power can mine blocks faster than 
honest nodes, and hence can overtake a blockchain. This is extremely unlikely to occur for 



Ethereum MainNet but can occur for PoW blockchains that have a lower hash rate. This 
introduces a risk for crosschain operation, as an asset locked in a source chain might be on a 
wrong fork and needs to be rolled back. And when a transaction is rolled back, its 
corresponding asset that was transferred to the target blockchain might be spent already, and 
cannot be rolled back. It is reasonable to assume that once a security problem is found in a 
source chain or target chain, the crosschain transactions will most likely be unrecoverable and 
the procedure of compensating the crosschain asset loss will need to be triggered. 

Another risk factor is finality of the source blockchain. A transaction is final when the block 
containing the transaction can not be changed. For many crosschain protocols, when a 
transaction is executed in a source blockchain, an event is recorded and used to trigger a 
corresponding transaction on a target chain. For a relayer that transfers the event on the 
source chain, it is essential that the source chain transaction is finalized. For most public 
blockchains, the finality of a blockchain is probabilistic. That is, it is not a fixed number of 
blocks. It is important to determine a reasonable number of block confirmations to ensure a 
balance of security and performance. Ideally, a consensus algorithm will support one block 
finality (also known as Instant Finality). This is the best feature to have in order for 
supporting crosschain operation. However, the existing blockchains such as Ethereum 
MainNet and the Bitcoin blockchain require multiple confirmed blocks for a transaction to be 
finalized. This is a factor to consider when analyzing crosschain security. 

Crosschain Relayers 

Crosschain relayers carry assets, messages, events, and commands from a source blockchain 
to a target blockchain. This is an offchain operation and therefore it is very difficult to ensure 
security. The relayers can be permissioned or permissionless. For permissioned relayers, 
there is a governance smart contract to administer the registration of the relayers. The relayer 
registration smart contracts are managed by multiple administrators with a voting mechanism 
provided to approve or reject relayers. For permissionless relayers (also known as Open 
Relayers) any crosschain node can be registered as a relayer by the open registration smart 
contract as long as certain criteria such as minimum system requirements and asset staking 
criteria are met. Permissionless relayers are required to stake assets to a governing smart 
contract as a security deposit to prevent wrong-doing. The smart contracts are implemented 
with a slashing mechanism to punish relayers who manipulate crosschain transactions and 
proofs. 

The security of permissioned relayers are governed by the integrity and truthfulness of the 
relayer administrators. When a relayer registration smart contract is first deployed, there is a 
single owner of the smart contract. The owner then adds additional administrators based on 
crosschain operation governance policy, evolving from single ownership to a group of 
owners. The group administrators can then adopt a voting mechanism coded in the smart 
contract to add relayers and additional administrators. This relayer model best fits a 
consortium where crosschain operations are managed collectively, an administrator group 
serves as the board of directors, and relayers are verified and approved to relay crosschain 
transactions, events, and commands. 

The security of permissionless relayers are guarded by asset staking, randomness, and multi-
party computing. Staking allows a permissionless relayer node to be held accountable for any 
fund lost due to malicious manipulation of crosschain transactions. The relayer nodes can 
also be randomly selected from a pool of relayers candidates to form a multi-party computing 



(MPC) group that does not rely on a single visible private key. Instead, it can require a 
threshold of relayers to sign the message together in order to authorize a crosschain 
transaction. The higher the threshold of a MPC group, the less of a chance there is chance for 
a relayer group to collude. One thing to note is that although higher signing thresholds harden 
security, there is a side effect that there are more restrictions for MPC members, and hence 
this decreases the availability of the system. 

Smart Contract Layer 

Similar to decentralization, in order to safeguard the crosschain smart contract, the owner of 
the smart contract needs to safeguard its private key through a Hardware Security Module 
(HSM), Key Management System (KMS), hardware wallet, offline wallet, or secure vault 
technology. Alternatively, shared ownership can be established by having the contract owned 
by a multi-signature wallet. The smart contract owner can also denounce the ownership of the 
smart contract, so that the smart contract cannot be altered. However, this model has the 
drawback that without additional mechanisms and safeguards in place, the system cannot 
handle emergency situations such as coding errors or external security breaches, and needs to 
be redeployed to recover from such problems. 

Oracle Layer Security 

The Oracle layer is external to source chain, target chain and relayers, and is not administered 
by the crosschain operation group. It is important to choose a trusted oracle service. At this 
time, the crosschain interoperability specification does not cover the Oracle service and we 
recommend that best practices and security procedures with respect to using third party 
services are followed. 

Web Services 

Although blockchain has higher degree of decentralization and security when compared with 
legacy IT systems, most of the dapps have a web service layer that aggregate user actions and 
transform them into blockchain transaction raw data. This web service is centralized, and all 
security considerations for the web should be followed. It would be good to separate private 
key storage and transaction signing from any web services. 

Administrator Account 

When deploying a smart contract to a blockchain, there needs to be an administrator who 
sends the deployment transaction to the blockchain. To sign a transaction, the administrator 
needs to unlock the account with the private key. If an account is unlocked on a blockchain 
node, its private key is open, and can be stolen by an attacker. This kind of hack has taken 
place multiple times in the crypto world. There are more secure ways to deploy smart 
contracts. For example, administrators can use a hardware wallet, or use an offline wallet for 
the deployment. In both cases, the private keys are kept in separate devices and only signed 
transactions are copied to the online system to be sent out to the blockchain. The private key 
is then secure against network attacks as it never leaves the dedicated device. However, 
physical attacks and tampering with devices should still be considered.  

Securing Management Accounts with MPC 



There are two kinds of accounts that can be used to manage smart contracts, asset tokens, and 
crosschain bridges: Externally Owned Account and Contract Account. The owner account of 
a smart contract is the most important account, as this is the party that deploys smart 
contracts and has the privilege to update, halt, transfer, or disable a smart contract. The owner 
account can also give up ownership and hence make the smart contract stand on its own. 
Using dedicated administration accounts can provide an additional account to manage the 
operations of the smart contract. The administration account can set the parameters for a 
smart contract and also change the state of a smart contract. To increase the security of 
management accounts, it would be good to adopt MPC (multi-party computing) to safeguard 
the private key of such a joint account. The way an MPC works is through sharding a private 
key into multiple segments and each person has a portion of the private key. When signing a 
transaction, a certain portion of MPC nodes will need to sign the transactions individually 
and send out the signature to the MPC group. The MPC method provides a way to sign 
transactions collectively and hence dramatically improve crosschain security. 

Staking and Slashing 

For crosschain bridges that are truly decentralized and permissionless, the security of the 
crypto assets will need to be safeguarded by assets staked by the bridge nodes, in order to 
ensure that there is no collusion among them and any wrongdoing by the bridge operators 
will be slashed using the stake deposited for the bridges. Similar to the PoS (proof of stake) 
blockchain consensus model, stake can help the crosschain registration service to rank and 
select operators to carry out crosschain transactions. Bridge stake can also help secure the 
crosschain network to prevent wrongdoing in crosschain service operations. Normally the 
slashing of staked assets can be performed in two scenarios: one is in the case of inactivity, 
and another one is signing fraudulent transactions. For the inactivity case, the bridge node 
may be in an idle state, or not configured correctly, or it is simply shut down. For the case of 
signing fraudulent transactions, the bridge groups and smart contract have a way to verify the 
transactions from different bridge nodes and report malsigned transactions to the 
administrative smart contract for slashing. 

Crosschain staking can be done by implementing smart contracts on a blockchain with a 
staking function such as stake_deposit() taking function inputs of: blockchain_id, 
account_address, amount, bridge_id, duration, and signatures to fund a bridge. Here, 
blockchain_id represents a blockchain, account_address is an address of the EOA 
(Externally Owned Account) from which funds will be withdrawn or locked to support a 
bridge to process cross-chain transactions, the amount parameter specifies the amount of the 
asset that will be deposited, bridge_id represents the bridge for which the fund will be 
deposited, duration is the length of time when the asset will be locked in the account, and 
signature is a signed message from the account owner to enhance the authenticity of the 
staking request. 

To ensure that the staking asset can be used to compensate for the loss due to crosschain 
collusion, there should be a limit, i.e. bridge capacity, on the maximum amount of assets that 
can be transferred across blockchains. Bridge capacity can be the sum of the total staking 
assets deposited to a bridge. If the total value of crosschain assets exceeds the bridge 
capacity, the bridge is no longer fully secured, because the incentives of bridge nodes to 
profit from collusion increases. 

 



Acknowledgements 
The EEA acknowledges and thanks Chaals Nevile (EEA), Tas Dienes (Ethereum 
Foundation), Coenie Beyers (Adhara), Brittany Mauck (EEA), James Harsh (EEA), Anais 
Ofranc (EEA) for their contribution to the development of this version of guideline. 

 

 


