
https://entethalliance.github.io/client-spec/spec.html

Editors:
Robert Coote (PegaSys)
Chaals Nevile (Enterprise Ethereum Alliance)
Grant Noble (PegaSys)
George Polzer (Everymans.ai)

Former editors:
Daniel Burnett (PegaSys)
David Hyland-Wood (PegaSys)

Contributors to this version:
Duarte Aragao (Clearmatics), Janie Baños (Dekra), Sanjay Bakshi (Intel), Imran Bashir
(Quorum), Meredith Baxter (PegaSys), Tim Beiko (PegaSys), Tomas Bertani
(ProvableThings), Coogan Brennan (ConsenSys), Mark Bruening (BakerHostetler), Benjamin
Burns (Whiteblock), Jean-Charles Cabalguen (iExec), David Clark (Truffle), Zak Cole
(Whiteblock), Rob Dawson (PegaSys), Anthony Denyer (Web3Labs), Paul DiMarzio (EEA),
Dan Doney (Securrency), Samer Falah (Quorum), Sara Feenan (Clearmatics), Danno Ferrin
(PegaSys), Andreas Freund (ConsenSys), Ken Fromm (EEA), Eduardo Garcia
(Accenture), Puneetha Karamsetty (Web3Labs), Libby Kent (Quorum), Ivaylo Kirilov
(Web3Labs), Maya Konaka (Blockapps), Kieren James-Lubin (Blockapps), Tom Lindeman
(ConsenSys), Tyrone Lobban (Quorum), Chris McKay (PegaSys), Arash Mahboubi (PegaSys),
Boris Mann (SPADE), Madeline Murray (PegaSys), George Ornbo
(Clearmatics), Eric Rafaloff (TrailOfBits), Brianna Rich (EEA), Peter de Rooij (Accenture),
Lior Saar (BlockApps), Joseph Schweitzer (Ethereum Foundation), Felix Shnir (JP Morgan
Chase), Przemek Siemion (Banco Santander), Conor Svensson (Web3Labs), Clark Thompson
(ConsenSys), Antoine Toulme (Whiteblock), Tom Willis (Intel), Victor Wong (BlockApps),
Yevgeniy 'Eugene' Yarmosh (Intel), Lei Zhang (iExec), Jim Zhang (ConsenSys), Weijia Zhang
(Wanchain)

Enterprise Ethereum Alliance
Client Specification v4
8 October 2019

Latest editor's draft:

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 1 of 68

file:///Users/chaals/Documents/GitHub/client-spec/docs/final.html
https://entethalliance.github.io/client-spec/spec.html
mailto:robert.coote@consensys.net
mailto:chaals@entethalliance.org
mailto:grant.noble@consensys.net
mailto:gpolzer@everymans.ai
https://pegasys.tech/
https://pegasys.tech/

Copyright, Licensing, and Limitation of Warranty

The copyright in this document is owned by Enterprise Ethereum Alliance Inc. (“EEA” or “Enterprise
Ethereum Alliance”). No modifications, edits or changes to the information in this document are
permitted. Subject to the terms and conditions described herein, this document may be duplicated for
internal use, provided that all copies contain all proprietary notices and disclaimers included herein.
Except as otherwise provided herein, no license, express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

Use of this document and any related intellectual property incorporated herein, is also governed by the
Bylaws, Intellectual Property Rights Policy and other governing documents and policies of EEA and is
subject to the disclaimers and limitations described below.
No use or display of any of the following names or marks “Enterprise Ethereum Alliance”, the acronym
“EEA”, the EEA logo or any combination thereof) to claim compliance with or conformance to this
document (or similar statements) is permitted absent EEA membership and express written permission
from the EEA. The EEA is in process of developing a conformance testing and certification program
only for the EEA members in good standing, which it targets to launch towards the end of 2020.
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY QUALITY,
OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF ANY COURSE OF
DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE. EEA DOES
NOT WARRANT THAT THIS DOCUMENT IS COMPLETE OR WITHOUT ERROR AND
DISCLAIMS ANY WARRANTIES TO THE CONTRARY.

Each user of this document hereby acknowledges that software or products implementing the
technology specified in this document (“EEA-Compliant Products”) may be subject to various
regulatory controls under the laws and regulations of various governments worldwide. Such laws and
regulatory controls may govern, among other things, the combination, operation, use, implementation
and distribution of EEA-Compliant Products. Examples of such laws and regulatory controls include,
but are not limited to, airline regulatory controls, telecommunications regulations, finance industry and
security regulations, technology transfer controls, health and safety and other types of regulations. Each
user of this document is solely responsible for the compliance by their EEA-Compliant Products with
any such laws and regulations and for obtaining any and all required authorizations, permits, or licenses
for their EEA-Compliant Products related to such regulations within the applicable jurisdictions. Each
user of this document acknowledges that nothing in this document or the relevant specification provides
any information or assistance in connection with securing such compliance, authorizations or licenses.
NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES WHATSOEVER REGARDING
THE APPLICABILITY OR NON-APPLICABILITY OF ANY SUCH LAWS OR REGULATIONS OR
THE SUITABILITY OR NON-SUITABILITY OF ANY SUCH PRODUCT OR SERVICE FOR USE IN
ANY JURISDICTION.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 2 of 68

Abstract

This document, the Enterprise Ethereum Alliance Client Specification, defines the implementation
requirements for Enterprise Ethereum clients, including the interfaces to external-facing components of
Enterprise Ethereum and how they are intended to be used.

EEA has not investigated or made an independent determination regarding title or non-infringement of
any technologies that may be incorporated, described or referenced in this document. Use of this
document or implementation of any technologies described or referenced herein may therefore infringe
undisclosed third-party patent rights or other intellectual property rights. The user is solely responsible
for making all assessments relating to title and non-infringement of any technology, standard, or
specification referenced in this document and for obtaining appropriate authorization to use such
technologies, standards, and specifications, including through the payment of any required license fees.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR
NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR
SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT.
IN NO EVENT SHALL EEA OR ANY OF ITS MEMBERS BE LIABLE TO THE USER OR TO A THIRD
PARTY FOR ANY CLAIM ARISING FROM OR RELATING TO THE USE OF THIS DOCUMENT,
INCLUDING, WITHOUT LIMITATION, A CLAIM THAT SUCH USE INFRINGES A THIRD
PARTY’S INTELLECTUAL PROPERTY RIGHTS OR THAT IT FAILS TO COMPLY WITH
APPLICABLE LAWS OR REGULATIONS. BY USE OF THIS DOCUMENT, THE USER WAIVES ANY
SUCH CLAIM AGAINST EEA AND ITS MEMBERS RELATING TO THE USE OF THIS DOCUMENT.
EEA reserves the right to adopt any changes or alterations to this document as it deems necessary or
appropriate without any notice. User is solely responsible for determining whether this document has
been superseded by a later version or a different document.

This document is subject to further approval and ratification by the EEA Board of Directors.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 3 of 68

1.
1.1

2.
2.1
2.2

3.

Private transaction implementation.

Agree on a BFT consensus algorithm.

Offchain and trusted computing APIs.

Cross-chain interoperability.

Tracking developments for Eth 1.x and Eth 2.0.

Requirements for Enterprise Ethereum blockchains.

Introduction
Why Produce a Client Specification?

Conformance
Experimental Requirements
Requirement Categorization

Security Considerations

Status of This Document

This section describes the status of this document at the time of its publication. Newer documents
might supersede this document.

This is a Board Review draft of the Enterprise Ethereum Alliance Client Specification version 4.
Changes made since version 3 of the Specification, released on 13 May 2019, have been reviewed
by the Enterprise Ethereum Alliance (EEA) Technical Specification Working Group (TSWG) but
not the EEA Board.

The TSWG propose this revision of the Specification to the EEA Board for approval and
publication on 10 October 2019, obsoleting version 3. The TSWG expects to produce a further
revision of this specification for release in the second quarter of 2020.

Although predicting the future is known to be difficult, as well as ongoing quality enhancement,
future work on this Specification is expected to include the following aspects:

Table of Contents

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 4 of 68

3.1
3.2
3.3
3.4
3.5

4.

5.
5.1
5.2
5.3

6.
6.1
6.2
6.2.1
6.3
6.3.1
6.3.2
6.3.2.1

6.3.2.2

6.3.2.3

6.3.2.4

6.3.3
6.3.3.1

6.3.3.2

6.3.3.3

6.3.3.3.1

6.3.3.3.2

6.3.3.3.3

6.3.3.3.4

6.3.3.4

6.3.3.4.1

6.3.3.4.2

6.3.3.4.3

6.3.3.4.4

6.3.4
6.3.5

7.
7.1

Callback URL Sanitization
Attacks on Enterprise Ethereum
Positive Security Design Patterns
Handling of Sensitive Data
Security of Client Implementations

Enterprise Ethereum Architecture

Application Layer
ÐApps Sublayer
Infrastructure Contracts and Standards Sublayer
Smart Contract Tools Sublayer

Tooling Layer
Credential Management Sublayer
Integration and Deployment Tools Sublayer

Enterprise Management Systems
Client Interfaces and APIs Sublayer

Compatibility with the Core Ethereum JSON-RPC API
Extensions to the JSON-RPC API

eea_sendTransactionAsync

eea_sendTransaction

eea_sendRawTransaction

eea_sendRawTransactionAsync

Permissioning Smart Contract
Permissioning enforcement

Permissioning management

Node Permissioning

Node Permissioning Functions

Node Permissions

Client Implementation

Chain Initialization

Account Permissioning

Account Permissioning Function

Client Implementation

Contract Implementation

Chain Initialization

Inter-chain
Oracles

Enterprise 3 P's Layer
Privacy Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 5 of 68

7.1.1
7.1.2
7.1.3
7.1.4
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3

8.
8.1
8.2
8.2.1
8.3

9.
9.1

10.

11.

12.

13.

A.
A.1
A.2
A.3
A.4
A.5

B.
B.1
B.2

On-chain
Off-chain (Trusted Computing)
Private Transactions
Privacy Groups

Performance Sublayer
On-chain (Layer 1 and Layer 2) Scaling
Off-chain (Layer 2 Compute)

Permissioning Sublayer
Nodes
Ethereum Accounts
Additional Permissioning Requirements

Core Blockchain Layer
Storage and Ledger Sublayer
Execution Sublayer

Finality
Consensus Sublayer

Network Layer
Network Protocol Sublayer

Anti-spam

Cross-client Compatibility

Cross-chain Interoperability

Synchronization and Disaster Recovery

Additional Information
Terms defined in this specification
Events, functions, methods, parameters defined in this specification
Summary of Requirements
Acknowledgments
Changes

References
Normative references
Informative references

1. Introduction

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 6 of 68

This section is non-normative.

This document, the Enterprise Ethereum Alliance Client Specification, defines the implementation
requirements for Enterprise Ethereum clients, including the interfaces to external-facing
components of Enterprise Ethereum and how they are intended to be used. A partial list of use
cases that this specification attempts to address is available as a work in progress [USECASES].

For the purpose of this Specification:

Public Ethereum (Ethereum) is the public blockchain-based distributed computing platform
featuring smart contract (programming) functionality defined by the [Ethereum-Yellow-
Paper], [EIPs], and associated specifications.

Ethereum MainNet (MainNet) is the public Ethereum blockchain whose chainid and
network ID are both 1.

Enterprise Ethereum is the set of enterprise-focused extensions to public Ethereum defined in
this Specification. These extensions provide the ability to perform private transactions, and
enforce permissioning, for Ethereum blockchains that use them. Such blockchains are known
as Enterprise Ethereum blockchains.

An Enterprise Ethereum client (a client) is the software that implements Enterprise
Ethereum, and is used to run nodes on an Enterprise Ethereum blockchain.

A node is an instance of an Enterprise Ethereum client running on an Enterprise Ethereum
blockchain.

NOTE

Multiple clients might run on an individual device, or a client might run on a cloud service.

With a growing number of vendors developing Enterprise Ethereum clients, meeting the
requirements outlined in this Client Specification ensures different clients can communicate with
each other and interoperate reliably on a given Enterprise Ethereum blockchain.

For ÐApp developers, for example, a Client Specification ensures clients provide a set of identical
interfaces so that ÐApps will work on all conforming clients. This enables an ecosystem where
users can change the software they use to interact with a running blockchain, instead of being
forced to rely on a single vendor to provide support.

From the beginning, this approach has underpinned the development of Ethereum, and it meets a
key need for blockchain use in many enterprise settings.

1.1 Why Produce a Client Specification?

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 7 of 68

https://entethalliance.github.io/client-spec/usecases.html
https://chainid.network/

Client diversity also provides a natural mechanism to help verify that the protocol specification is
unambiguous because interoperability errors revealed in development highlight parts of the
protocol that different engineering teams interpret in different ways.

Finally, standards-based interoperability allows users to leverage the widespread knowledge of
Ethereum in the blockchain development community to minimize the learning curve for working
with Enterprise Ethereum, and thus reduces risk when deploying an Enterprise Ethereum
blockchain.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

This Specification includes requirements and Application Programming Interfaces (APIs) that are
described as experimental. Experimental means that a requirement or API is in early stages of
development and might change as feedback is incorporated. Implementors are encouraged to
implement these experimental requirements, with the knowledge that requirements in future
versions of the Specification are not guaranteed to be compatible with the current version. Please
send your comments and feedback on the experimental portions of this Specification to the EEA
Technical Steering Committee at https://entethalliance.org/contact/.

All requirements in this Specification are categorized as either:

Protocol requirements, denoted by [P] prefixed to the requirement ID.

Protocol requirements are requirements where the desired properties and correctness of the
system can be jeopardized unless all clients implement the requirement correctly.

Client requirements, denoted by [C] prefixed to the requirement ID.

Client requirements do not impact global system behavior, but if not implemented correctly in
a client, that client might not function correctly, or to a desirable level, in an Enterprise

2. Conformance

2.1 Experimental Requirements

2.2 Requirement Categorization

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 8 of 68

https://tools.ietf.org/html/bcp14
https://entethalliance.org/contact/

Ethereum blockchain.

This section is non-normative.

Security of information systems is a major field of work. Enterprise Ethereum software
development shares with all software development the need to consider security issues and the
obligation to update implementations in line with new information and techniques to protect its
users and the ecosystem in which it operates.

However, some aspects of Ethereum in general, and Enterprise Ethereum specifically, are
especially important in an organizational environment.

Enterprise Ethereum software development shares with all software development the need to
consider security issues and the obligation to update implementations in line with new information
and techniques to protect its users and the ecosystem in which it operates.

The asynchronous JSON-RPC methods eea_sendTransactionAsync and
eea_sendRawTransactionAsync utilize a URL provided by the user at call time to inform the
user of the completion of the asynchronous operation. Attackers can use these URLs to cause the
node server to invoke resources present on the nodes private network that the attacker would not
normally have access to or to cause the node to spam the callback URL. Enterprise Ethereum
clients need to provide appropriate URL sanitization and restrictions, such as whitelisting and

EXAMPLE 1: Requirement Categorization

[P] SMRT-030: Enterprise Ethereum clients MUST support smart contracts of at least 24,576
bytes in size.

Requirement SMRT-030 is a protocol requirement. Running a client that does not implement
this requirement on an Enterprise Ethereum blockchain risks causing an error in the functioning
of the blockchain.

[C] JRPC-050: Enterprise Ethereum clients MUST implement the [JSON-RPC-PUB-SUB]
API.

Requirement JRPC-050 is a client requirement, which if not implemented correctly, does not
disrupt the correct functioning of an Enterprise Ethereum blockchain.

3. Security Considerations

3.1 Callback URL Sanitization

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 9 of 68

request throttling, to prevent such vulnerabilities from being exploited in the course of the
asynchronous operations execution.

Modeling attacks against a node helps identify and prioritize the necessary security
countermeasures to implement. Some attack categories to consider include:

Attacks on unauthenticated [JSON-RPC] interfaces through malicious JavaScript in the
browser using DNS rebinding.

Eclipse attacks (attacks targeting specific nodes in a decentralized network) that attempt to
exhaust client network resources or fool its node-discovery protocol.

Targeted exploitation of consensus bugs in EVM implementations.

Malicious code contributions to open-source repositories.

All varieties of social engineering attacks.

Complex interfaces increase security risk by making user error more likely. For example, entering
Ethereum addresses by hand is prone to errors. Therefore, implementations can reduce the risk by
providing user-friendly interfaces, ensuring users correctly select an opaque identifier using tools
like a contact manager.

Gas (defined in the [Ethereum-Yellow-Paper]) is a virtual pricing mechanism for transactions and
smart contracts that is implemented by Ethereum to protect against Denial of Service attacks and
resource-consumption attacks by compromised, malfunctioning or malicious nodes. Enterprise
Ethereum provides additional tools to reduce security risks, such as more granular permissions for
actions in a network.

Permissioning plays some role in mitigating network-level attacks (like the 51% attack), but it is
important to carefully consider which risks are of most concern to a client implementation versus
those that are better mitigated by updates to the Ethereum consensus protocol design.

The implications of private data storage are also important to consider, and motivate several
requirements within this Specification.

3.2 Attacks on Enterprise Ethereum

3.3 Positive Security Design Patterns

3.4 Handling of Sensitive Data

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 10 of 68

The long-term persistence of encrypted data on any public platform (such as Ethereum) exposes it
to eventual decryption by brute-force attack, accelerated by the inevitable periodic advances in
cryptanalysis. A future shift to post-quantum cryptography is a current concern, but it will likely
not be the last advancement in the field. Assuming no encryption scheme endures for eternity, a
degree of protection is required to reasonably exceed the lifetime of the data's sensitivity.

Besides user-generated data, a client is also responsible for managing and protecting private keys.
Encrypting private keys with a passphrase or other authentication credential before storage helps
protect them from disclosure. It is also important not to disclose sensitive data when recording
events to a log file.

There are several specific functionality areas that are more prone to security issues arising from
implementation bugs. The following areas deserve a greater focus during the design and the
security assessment of an Enterprise Ethereum client:

Peer-to-peer protocol implementation

Object deserialization routines

Ethereum Virtual Machine (EVM) implementation

Key pair generation.

The peer-to-peer protocol used for communication among nodes in Ethereum is a client's primary
vector for exposure to untrusted input. In any software, the program logic that handles untrusted
inputs is the primary focus area for implementing secure data handling.

Object serialization and deserialization is commonly part of the underlying implementation of the
P2P protocol, but also a source of complexity that, historically, is prone to security vulnerabilities
across many implementations and many programming languages. Selecting a deserializer that
offers strict control of data typing can help mitigate the risk.

EVM implementation correctness is an especially important security consideration for clients.
Unless EVMs behave identically for all possibilities of input, there is a serious risk of a hard fork
caused by an input that elicits the differences in behavior across clients. EVM implementations are
also exposed to denial-of-service attempts by maliciously constructed smart contracts, and the even
more serious risk of an exploitable remote-code-execution vulnerability.

The Ethereum specification defines many of the technical aspects of public/private key pair format
and cryptographic algorithm choice, but a client implementation is still responsible for properly
generating these keys using a well-reviewed cryptographic library. Specifically, a client
implementation needs a properly seeded, cryptographically secure, pseudo-random number
generator (PRNG) during the keypair generation step. An insecure PRNG is not generally apparent

3.5 Security of Client Implementations

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 11 of 68

by merely observing its outputs, but enables attackers to break the encryption and reveal users'
sensitive data.

This section is non-normative.

The following two diagrams show the relationship between Enterprise Ethereum components that
can be part of any Enterprise Ethereum client implementation. The first is a stack representation of
the architecture showing a library of interfaces, while the second is a more traditional style
architecture diagram showing a representative architecture.

ENTERPRISE ETHEREUM ARCHITECTURE STACK
APPLICATION

DAPPS APPLICATIONS EXPLORERS, MONITORING & BUSINESS INTELLIGENCE

INFRA CONTRACTS &
STANDARDS

TOKEN STANDARDS IDENTITY SERVICES ETHEREUM NAME SERVICE PERMISSIONING CONTRACTS

SMART CONTRACT
TOOLS SMART CONTRACT LANGUAGES DEVELOPER TOOLS SECURITY ANALYSIS AND AUDITS FORMAL VERIFICATION

TOOLING
CREDENTIAL
MANAGEMENT WALLETS KEY MANAGEMENT HARDWARE SECURITY MANAGER

INTEGRATION &
DEPLOYMENT TOOLS INTEGRATION LIBRARIES ENTERPRISE MANAGEMENT SYSTEMS

CLIENT INTERFACES /
APIs JSON-RPC INTER-CHAIN ORACLES

ENTERPRISE 3 P's

PRIVACY ON-CHAIN OFF-CHAIN / TRUSTED COMPUTE PRIVATE TRANSACTIONS

PERFORMANCE ON-CHAIN OPTIMIZATION OFF-CHAIN COMPUTING OFF-CHAIN / TRUSTED COMPUTE

PERMISSIONING CLIENT WHITELIST PERMISSION CHECKS

CORE BLOCKCHAIN

STORAGE/LEDGER ON-CHAIN PUBLIC STATE ON-CHAIN STORAGE OFF-CHAIN STORAGE ON-CHAIN PRIVATE STATE

EXECUTION EVM SYNC PRECOMPILED CONTRACTS TRUSTED COMPUTE

CONSENSUS PROOF OF WORK PROOF OF AUTHORITY BFT ALGORITHMS

NETWORK

NETWORK PROTOCOL DEVP2P

LEGEND Yellow Paper Public Ethereum Application Layer Enterprise Ethereum

All Yellow Paper, Public Ethereum, and Application Layer components may be extended for Enterprise Ethereum as required.
© 2018-2019 Enterprise Ethereum Alliance

Figure 1 Enterprise Ethereum Architecture Stack

4. Enterprise Ethereum Architecture

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 12 of 68

Figure 2 Representative Enterprise Ethereum High-level Architecture

The architecture stack for Enterprise Ethereum consists of five layers:

Application

Tooling

Privacy and Scaling

Core Blockchain

Network.

These layers are described in the following sections.

The Application layer exists, often fully or partially outside of a client, where higher-level services
are provided. For example, Ethereum Name Service (ENS), node monitors, blockchain state

5. Application Layer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 13 of 68

visualizations and explorers, self-sovereign and other identity schemes, wallets, and any other
applications of the ecosystem envisaged.

Wallets are software applications used to store an individual’s credentials (cryptographic private
keys), which are associated with the state of that user’s Ethereum account.

Wallets can interface with Enterprise Ethereum using the Extended RPC API, as shown in Figure
2. A wallet can also interface directly with the enclave of a private transaction manager, or
interface with public Ethereum.

A private transaction manager is a subsystem of an Enterprise Ethereum system for implementing
privacy and permissioning.

Decentralized Applications, or ÐApps, are software applications running on a decentralized peer-
to-peer network, often a blockchain. A ÐApp might include a user interface running on another
(centralized or decentralized) system. ÐApps run on top of Ethereum. ÐApps running on an
Enterprise Ethereum blockchain can use the extensions to the Ethereum JSON-RPC API that are
defined in this Specification.

Also at the ÐApps sublayer are blockchain explorers, tools to monitor the blockchain, and other
business intelligence tools.

This section is non-normative.

Some important tools for managing a blockchain, are built at the Application layer. These
components together make up the Infrastructure Contracts and Standards sublayer.

Permissioning contracts determine whether nodes and accounts can access, or perform specific
actions on, an Enterprise Ethereum blockchain, according to the needs of the blockchain. These
permissioning contracts can implement Role-based access control (RBAC) [WP-RBAC] or
Attribute-based access control (ABAC) [WP-ABAC], as well as simpler permissioning models, as
described in the Permissioning Management Examples section of the Implementation Guide [EEA-
implementation-guide].

Token standards provide common interfaces and methods along with best practices. These include
[ERC-20], [ERC-223], [ERC-621], [ERC-721], and [ERC-827].

The Ethereum Name Service (ENS) provides a secure and decentralized mapping from simple,
human-readable names to Ethereum addresses for resources both on and off the blockchain.

5.1 ÐApps Sublayer

5.2 Infrastructure Contracts and Standards Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 14 of 68

Enterprise Ethereum inherits the smart contract tools used by public Ethereum. These tools include
smart contract languages and associated developer tools such as parsers, compilers, and debuggers,
as well as methods used for security analysis and formal verification of smart contracts.

Enterprise Ethereum implementations enable use of these tools and methods through
implementation of the Execution sublayer, as described in Section § 8.2 Execution Sublayer.

[P] SMRT-030: Enterprise Ethereum clients MUST support smart contracts of at least 24,576 bytes
in size.

[P] SMRT-040: Enterprise Ethereum clients MUST read and enforce a size limit for smart
contracts from the current network configuration (for example, from the genesis block).

[P] SMRT-050: If no contract size limit is specified in a genesis block, subsequent hard fork block,
or network configuration, Enterprise Ethereum clients MUST enforce a size limit on smart
contracts of 24,576 bytes.

The genesis block is the first block of a blockchain.

A hard fork is a permanent divergence from the previous version of a blockchain. Nodes using
older network configuration are no longer able to participate fully in the Enterprise Ethereum
blockchain after the hard fork block.

A hard fork block is the block from which a hard fork occurred.

The Tooling layer contains the APIs used to communicate with clients. The Ethereum JSON-RPC
API, implemented by public Ethereum, is the primary API to submit transactions for execution,
deploy smart contracts, and to allow ÐApps and wallets to interact with the platform. The [JSON-
RPC] remote procedure call protocol and format is used for the JSON-RPC API implementation.
Other APIs are allowed, including those intended for inter-blockchain operations and to call
external services, such as trusted oracles.

Integration libraries, such as [web3j], [web3.js], and [Nethereum], are software libraries used to
implement APIs with different language bindings (like the Ethereum JSON-RPC API) for
interacting with Ethereum nodes.

Enterprise Ethereum implementations can restrict operations based on permissioning and
authentication schemes.

5.3 Smart Contract Tools Sublayer

6. Tooling Layer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 15 of 68

The Tooling layer also provides support for the compilation, and possibly formal verification of,
smart contracts through the use of parsers and compilers for one or more smart contract languages.

Smart contract languages are the programming languages such as [Solidity] and [LLL] used to
create smart contracts. For each language tools can perform tasks such as compiling to EVM
bytecode, static security checking, or formal verification.

Formal verification is the mathematical verification of the logical correctness of a smart contract
designed to run in the EVM.

Credentials in the context of Enterprise Ethereum blockchains refers to an individual’s
cryptographic private keys, which are associated with that user’s Ethereum account. Enterprise
Ethereum clients can choose to offer local handling of user credentials, such as key management
systems and wallets. Such facilities might also be implemented outside the scope of a client.

Many software systems integrate with enterprise management systems using common APIs,
libraries, and techniques, as shown in Figure 3.

Figure 3 Management Interfaces

As well as deployment and configuration capabilities, Enterprise Ethereum clients can offer
possibilities such as software fault reporting, performance management, security management,
integration with other enterprise software, and historical analysis tools.

6.1 Credential Management Sublayer

6.2 Integration and Deployment Tools Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 16 of 68

These are not requirements of this Specification, instead they are optional features to distinguish
between different Enterprise Ethereum clients.

As part of the Client Interfaces and APIs sublayer, [JSON-RPC] is a stateless, light-weight remote
procedure call (RPC) protocol using [JSON] as its data format. The [JSON-RPC] specification
defines several data structures and the rules around their processing.

An Ethereum JSON-RPC API is used to communicate between ÐApps and nodes.

[P] JRPC-010: Enterprise Ethereum clients MUST provide support for the following Ethereum
JSON-RPC API methods:

net_version

net_peerCount

net_listening

eth_protocolVersion

eth_syncing

eth_coinbase

eth_hashrate

eth_gasPrice

eth_accounts

eth_blockNumber

eth_getBalance

eth_getStorageAt

eth_getTransactionCount

eth_getBlockTransactionCountByHash

eth_getBlockTransactionCountByNumber

eth_getCode

eth_sendRawTransaction

eth_call

eth_estimateGas

6.3 Client Interfaces and APIs Sublayer

6.3.1 Compatibility with the Core Ethereum JSON-RPC API

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 17 of 68

eth_getBlockByHash

eth_getBlockByNumber

eth_getTransactionByHash

eth_getTransactionByBlockHashAndIndex

eth_getTransactionByBlockNumberAndIndex

eth_getTransactionReceipt

eth_getUncleByBlockHashAndIndex

eth_getUncleByBlockNumberAndIndex

eth_getLogs.

[P] JRPC-007: Enterprise Ethereum clients SHOULD implement [JSON-RPC-API] methods to be
backward compatible with the definitions given in version f4e6248 of the Ethereum JSON-RPC
API reference [JSON-RPC-API-vf4e6248], unless breaking changes were made and widely
implemented for the health of the ecosystem. For example, to fix a major security or privacy
problem.

[C] JRPC-015: Enterprise Ethereum clients MUST provide the capability to accept and respond to
JSON-RPC method calls over a websocket interface.

[C] JRPC-040: Enterprise Ethereum clients MUST provide an implementation of the
debug_traceTransaction method [debug-traceTransaction] from the Go Ethereum
Management API.

[C] JRPC-050: Enterprise Ethereum clients MUST implement the [JSON-RPC-PUB-SUB] API.

[P] JRPC-070: Enterprise Ethereum clients implementing additional nonstandard subscription
types for the [JSON-RPC-PUB-SUB] API MUST prefix their subscription type names with a
namespace prefix other than eea_.

[P] JRPC-080: The [JSON-RPC] method name prefix eea_ MUST be reserved for future use for
RPC methods specific to the EEA.

[P] JRPC-020: Enterprise Ethereum clients MUST provide one of the following sets of extensions
to create private transaction types defined in Section § 7.1.3 Private Transactions:

eea_sendTransactionAsync and eea_sendTransaction, or

eea_sendRawTransactionAsync and eea_sendRawTransaction.

6.3.2 Extensions to the JSON-RPC API

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 18 of 68

[P] JRPC-030: The eea_sendTransactionAsync, eea_sendTransaction,
eea_sendRawTransactionAsync, and eea_sendRawTransaction methods MUST respond
with a [JSON-RPC] error response when an unimplemented private transaction type is requested.
The error response MUST have the -50100 and the Unimplemented private
transaction type.

Example response

{
 "jsonrpc": "2.0",
 "id": 1,
 "error": {
 "code": -50100,
 "message": "Unimplemented private transaction type"
 }
}

NOTE

As in the public Ethereum [JSON-RPC-API], the two key datatypes for these
eea_send*Transaction* calls, which are passed hex encoded, are unformatted data byte
arrays (DATA) and quantities (QUANTITY). When encoding unformatted data, encode as hex,
prefix with "0x", and use two hex digits per byte. When encoding quantities (integers and
numbers), encode as hex and prefix with "0x". When encoding the privateFrom,
privateFor, and privacyGroupId DATA fields, encode them as base64.

This section is experimental.

A call to eea_sendTransactionAsync creates a private transaction, signs it, submits it to the
transaction pool, and returns immediately.

Using this method allows sending many transactions without waiting for recipient confirmation.

Parameters

The transaction object for this call contains:

from DATA, 20 bytes – The address of the account sending the transaction.

to DATA, 20 bytes – The address of the account receiving the transaction.

gas QUANTITY – Optional. The gas, as an integer, provided for the transaction.

code message

6.3.2.1 eea_sendTransactionAsync

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 19 of 68

gasPrice QUANTITY – Optional. The gas price, as an integer.

value QUANTITY – Optional. The value, as an integer, if present must be set to 0.

data DATA – Transaction data (compiled smart contract code or encoded method data).

nonce QUANTITY – Optional. A nonce value, as an integer. This allows you to overwrite
your own pending transactions that use the same nonce.

privateFrom DATA, 32 bytes – Optional. The public key of the sender of this private
transaction. If this parameter is not supplied, the node could supply a default for
privateFrom. If this parameter is not supplied and the node is unable to supply a default, the
transaction fails.

privateFor DATA – An array of the public keys of the intended recipients of this private
transaction. Mutually exclusive with the privacyGroupId parameter. If both the
privateFor and privacyGroupId parameters are provided, an error response is generated.

privacyGroupId DATA, 32 bytes – The privacy group identifier for the group of intended
recipients of this private transaction. If a client does not support this parameter it should return
a "PrivacyGroupId not supported" error response. Mutually exclusive with the privateFor
parameter. If both the privateFor and privacyGroupId parameters are provided, an error
response is generated.

restriction STRING – If restricted, the transaction is a restricted private transaction.
If unrestricted, the transaction is an unrestricted private transaction. For more
information, see Section § 7.1.3 Private Transactions.

callbackUrl STRING – The URL to post the results of the transaction to.

Callback Body

The callback object for this call contains:

txHash DATA, 32 bytes – The transaction hash (if successful).

txIndex QUANTITY – The index position, as an integer, of the transaction in the block.

blockHash DATA, 32 Bytes – The hash of the block this transaction was in.

blockNumber QUANTITY – The number of the block, as an integer, this transaction was in.

from DATA, 20 Bytes – The public key of the sender of this private transaction.

to DATA, 20 Bytes – The account address of the receiver. null if a contract creation
transaction.

cumulativeGasUsed QUANTITY – The total amount of gas used when this transaction was
executed in the block.

gasUsed QUANTITY – The amount of gas used by this specific transaction.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 20 of 68

contractAddress DATA, 20 Bytes – The contract address created, if a contract creation
transaction, otherwise null.

logs Array – An array of log objects generated by this transaction.

logsBloom DATA, 256 Bytes – A bloom filter for light clients to quickly retrieve related
logs.

error STRING – Optional. Includes an error message describing what went wrong.

id DATA – Optional. The ID of the request corresponding to this transaction, as provided in
the initial [JSON-RPC] call.

Also returned is either:

root DATA, 32 bytes – The post-transaction stateroot (pre-Byzantium).

status QUANTITY – The return status, either 1 (success) or 0 (failure).

Request Format

Response Format

{
"id":1,
"jsonrpc": "2.0"
}

Callback Format

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendTransactionAsync","params":[{
"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"gas": "0x76c0",
"gasPrice": "0x9184e72a000",
"data":"0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb
"privateFrom": "negmDcN2P4ODpqn/6WkJ02zT/0w0bjhGpkZ8UP6vARk=",
"privateFor": ["g59BmTeJIn7HIcnq8VQWgyh/pDbvbt2eyP0Ii60aDDw="],
"callbackUrl": "http://myserver/id=1",
"restriction": "restricted"}],
"id":1}'
Or alternatively, when a privacyGroupId is provided instead of privateFor
"privacyGroupId": "Vbj70zF+G2V/8XoyZzwqawfcQ+r9BkXoLQOqkQideys=",

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 21 of 68

Creates a private transaction, signs it, generates the transaction hash and submits it to the
transaction pool, and returns the transaction hash.

Parameters

The transaction object containing:

from DATA, 20 bytes – The address of the account sending the transaction.

to DATA, 20 bytes – Optional when creating a new contract. The address of the account
receiving the transaction.

gas QUANTITY – Optional. The gas, as an integer, provided for the transaction.

gasPrice QUANTITY – Optional. The gas price, as an integer.

value QUANTITY – Optional. The value, as an integer, if present must be set to 0.

data DATA – Transaction data (compiled smart contract code or encoded method data).

nonce QUANTITY – Optional. A nonce value, as an integer. This allows you to overwrite
your own pending transactions that use the same nonce.

privateFrom DATA, 32 bytes – Optional. The public key of the sender of this private
transaction. If this parameter is not supplied, the node could supply a default for
privateFrom. If this parameter is not supplied and the node is unable to supply a default, the
transaction fails.

privateFor DATA – An array of the public keys of the intended recipients of this private
transaction. Mutually exclusive with the privacyGroupId parameter. If both privateFor

{
"txHash":
"0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331"
"txIndex": "0x1", // 1
"blockNumber": "0xb", // 11
"blockHash": "0xc6ef2fc5426d6ad6fd9e2a26abeab0aa2411b7ab17f30a99d3cb96aed
"cumulativeGasUsed": "0x33bc", // 13244
"gasUsed": "0x4dc", // 1244
"contractAddress": "0xb60e8dd61c5d32be8058bb8eb970870f07233155", // or nu
"logs": "[{
// logs as returned by getFilterLogs, etc.
}, ...]",
"logsBloom": "0x00...0", // 256 byte bloom filter
"status": "0x1"
}

6.3.2.2 eea_sendTransaction

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 22 of 68

and privacyGroupId parameters are provided, an error response is generated.

privacyGroupId DATA, 32 bytes – The privacy group identifier for the group of intended
recipients of this private transaction. If a client does not support this parameter it should return
a "PrivacyGroupId not supported" error response. Mutually exclusive with the privateFor
parameter. If both privateFor and privacyGroupId parameters are provided, an error
response is generated.

restriction STRING – If restricted, the transaction is a restricted private transaction.
If unrestricted, the transaction is an unrestricted private transaction. For more
information, see Section § 7.1.3 Private Transactions.

Returns

DATA, 32 Bytes – The transaction hash, or the zero hash if the transaction is not yet available.

If creating a contract, use eth_getTransactionReceipt to retrieve the contract address after
the transaction is finalized.

Request Format

Response Format

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendTransaction","params": [{
"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"gas": "0x76c0",
"gasPrice": "0x9184e72a000",
"data":
"0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb9708
"privateFrom": "negmDcN2P4ODpqn/6WkJ02zT/0w0bjhGpkZ8UP6vARk=",
"privateFor": ["g59BmTeJIn7HIcnq8VQWgyh/pDbvbt2eyP0Ii60aDDw="],
"restriction": "restricted"}],
"id":1}'
Or alternatively, when a privacyGroupId is provided instead of privateFor
"privacyGroupId": "Vbj70zF+G2V/8XoyZzwqawfcQ+r9BkXoLQOqkQideys=",

{
"id":1,
"jsonrpc": "2.0",
"result": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527
}

6.3.2.3 eea_sendRawTransaction

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 23 of 68

Creates a private transaction, which has already been signed, generates the transaction hash and
submits it to the transaction pool, and returns the transaction hash.

The signed transaction passed as an input parameter is expected to include the privateFrom,
privateFor, privacyGroupId, and restriction fields, as specified in the Parameters section
of § 6.3.2.2 eea_sendTransaction.

Parameters

The transaction object containing:

data DATA – The signed transaction data.

Returns

DATA, 32 Bytes – The transaction hash, or the zero hash if the transaction is not yet available.

If creating a contract, use eth_getTransactionReceipt to retrieve the contract address after
the transaction is finalized.

Request Format

Response Format

This section is experimental.

A call to eea_sendRawTransactionAsync creates a private transaction, which has already been
signed, submits it to the transaction pool, and returns immediately.

Using this method allows sending many transactions without waiting for recipient confirmation.

params: ["0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendRawTransaction","params": [{see above
"id":1}'

{
"id":1,
"jsonrpc": "2.0",
"result": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527
}

6.3.2.4 eea_sendRawTransactionAsync

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 24 of 68

The signed transaction passed as an input parameter is expected to include the privateFrom,
privateFor, privacyGroupId, and restriction fields, as specified in the Parameters section
of § 6.3.2.1 eea_sendTransactionAsync. It is also expected to include the callbackUrl field.

Parameters

The transaction object containing:

data DATA – The signed transaction data.

Callback Body

The callback object for this call contains:

txHash DATA, 32 bytes – The transaction hash (if successful).

txIndex QUANTITY – The index position, as an integer, of the transaction in the block.

blockHash DATA, 32 Bytes – The hash of the block this transaction was in.

blockNumber QUANTITY – The number of the block, as an integer, this transaction was in.

from DATA, 20 Bytes – The public key of the sender of this private transaction.

to DATA, 20 Bytes – The address of the account receiving this transaction. null if a contract
creation transaction.

cumulativeGasUsed QUANTITY – The total amount of gas used when this transaction was
executed in the block.

gasUsed QUANTITY – The amount of gas used by this specific transaction.

contractAddress DATA, 20 Bytes – The contract address created, if a contract creation
transaction, otherwise null.

logs Array – An array of log objects generated by this transaction.

logsBloom DATA, 256 Bytes – A bloom filter for light clients to quickly retrieve related
logs.

error STRING – Optional. Includes an error message describing what went wrong.

id DATA – Optional. The ID of the request corresponding to this transaction, as provided in
the initial [JSON-RPC] call.

Also returned is either:

root DATA, 32 bytes – The post-transaction stateroot (pre-Byzantium).

status QUANTITY – The return status, either 1 (success) or 0 (failure).

params: ["0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 25 of 68

Request Format

Response Format

{
"id":1,
"jsonrpc": "2.0"
}

Callback Format

This section presents smart contract interfaces providing the necessary information for Enterprise
Ethereum clients to enforce permissioning models in an interoperable manner. This includes both
node- and account-permissioning interfaces.

It is based on a chain deployment architecture where permissioning is split into permissioning
management, handled by a permissioning contract on the Enterprise Ethereum blockchain, and
permissioning enforcement, handled by the Enterprise Ethereum client based on information
provided by the permissioning contract.

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendRawTransactionAsync","params": [{see
"id":1}'

{
"txHash":
"0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331"
"txIndex": "0x1", // 1
"blockNumber": "0xb", // 11
"blockHash": "0xc6ef2fc5426d6ad6fd9e2a26abeab0aa2411b7ab17f30a99d3cb96aed
"cumulativeGasUsed": "0x33bc", // 13244
"gasUsed": "0x4dc", // 1244
"contractAddress": "0xb60e8dd61c5d32be8058bb8eb970870f07233155", // or nu
"logs": "[{
 // logs as returned by getFilterLogs, etc.
}, ...]",
"logsBloom": "0x00...0", // 256 byte bloom filter
"status": "0x1"
}

6.3.3 Permissioning Smart Contract

6.3.3.1 Permissioning enforcement

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 26 of 68

For information necessary to enforce the permissioning requirements of an Enterprise Ethereum
blockchain, Enterprise Ethereum clients call specific functions in the permissioning contracts.
These are common functions for all clients on the Enterprise Ethereum blockchain to use. These
functions include:

connectionAllowed
Determines whether to permit a connection with another node.

transactionAllowed
Determines whether to accept a transaction received from a given Ethereum account.

A client is not necessarily able to update the permissioning scheme, nor does it automatically have
any knowledge of its implementation.

The node- and account-permissioning interfaces emit a permissionsUpdated event when the
underlying rules are changed. Clients register for these events that signal when to re-assess any
permissions that were granted, and when to re-assess any permission check results that were
cached.

The event contains addsRestrictions and addsPermissions Boolean flags. If either flag is
set to true, any previous connectionAllowed or transactionAllowed call could now result
in a different outcome, as the previously checked permissions have changed. If
addsRestrictions is set to true, this indicates that one or more previous
connectionAllowed or transactionAllowed calls that returned true will now return false,
and analogously if addsPermissions is true at least one connectionAllowed or
transactionAllowed call that returned false will now return true.

These smart contract functions provide the ability to configure and manage the permissioning
model in use. These include the bulk of the constructs used to organize permissions, processes to
adjust permissions, administration of the permissioning mechanism, and enforcing any regulatory
requirements.

The definition of these permissioning management functions depends on the permissioning model
of the specific Enterprise Ethereum blockchain. It is outside the scope of this Specification, but
crucial to the operation of the system.

Enterprise Ethereum blockchain operators can choose any permissioning model that suits their
needs.

Implementations of the permissioning contracts (both enforcement and management functions) are
provided on the Enterprise Ethereum blockchain by the blockchain operator. The implementation

6.3.3.2 Permissioning management

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 27 of 68

of permissioning enforcement functions, such as connectionAllowed, is part of the
permissioning contract.

When a management function is called that updates the permissioning model, the node or account
smart contract interfaces emit a permissionsUpdated event based on the permissions change.

Node permissioning restricts the peer connections that can be established with other nodes in the
Enterprise Ethereum blockchain. This helps to prevent interference and abuse by external parties
and can establish a trusted whitelist of nodes.

[P] PERM-200: Enterprise Ethereum clients MUST call the connectionAllowed function, as
specified in Section § 6.3.3.3.1 Node Permissioning Functions, or if it implements PERM-220 and
PERM-230, MAY use cached information to determine whether a connection with another node is
permitted, and any restrictions to be placed on that connection.

The connectionAllowed function returns a bytes32 type, which is interpreted as a bitmask
with each bit representing a specific permission for the connection.

[P] PERM-210: When checking the response to connectionAllowed, if any unknown
permissioning bits are found to be zero, Enterprise Ethereum clients MUST reject the connection.

[P] PERM-220: On receipt of a NodePermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST close any
network connections that are no longer permitted, and impose newly added restrictions on any
network connections that have had restrictions added.

[P] PERM-230: On receipt of a NodePermissionsUpdated event containing an
addsPermissions property with the value true, Enterprise Ethereum clients MUST check
whether existing network connections have had their restrictions lifted and allow future actions that
are now permitted.

The node connection rules support both the IPv4 and IPv6 protocol versions. IPv6 addresses are
represented using their logical byte value with big endian byte ordering. IPv4 addresses are
specified in the IPv4 reserved space within the IPv6 address space, which is found at
0000:0000:0000:0000:0000:ffff:, and can be be assembled by taking the logical byte value
of the IPv4 address with big endian byte ordering, and prefixing it with 80 bits of zeros followed by
16 bits of ones.

6.3.3.3 Node Permissioning

6.3.3.3.1 NODE PERMISSIONING FUNCTIONS

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 28 of 68

The connectionAllowed function is found at the address given by the
nodePermissionContract parameter in the network configuration. It implements the following
interface, including the NodePermissionsUpdated permissionsUpdated event:

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 29 of 68

Interface
[
 {
 "name": "connectionAllowed",
 "stateMutability": "view",
 "type": "function",
 "inputs": [
 {
 "name": "sourceEnodeHigh",
 "type": "bytes32"
 },
 {
 "name": "sourceEnodeLow",
 "type": "bytes32"
 },
 {
 "name": "sourceIp",
 "type": "bytes16"
 },
 {
 "name": "sourcePort",
 "type": "uint16"
 },
 {
 "name": "destinationEnodeHigh",
 "type": "bytes32"
 },
 {
 "name": "destinationEnodeLow",
 "type": "bytes32"
 },
 {
 "name": "destinationIp",
 "type": "bytes16"
 },
 {
 "name": "destinationPort",
 "type": "uint16"
 },
],
 "outputs": [
 {
 "name": "result",
 "type": "bytes32"
 }
]
 },

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 30 of 68

 {
 "type": "event",
 "name": "NodePermissionsUpdated",
 "inputs": [
 {
 "name": "addsRestrictions",
 "type": "bool",
 "indexed": false
 },
 {
 "name": "addsPermissions",
 "type": "bool",
 "indexed": false
 }
]
 }
]

Arguments

sourceEnodeHigh: The high (first) 32 bytes of the enode address of the node initializing the
connection.

sourceEnodeLow: The low (last) 32 bytes of the enode address of the node initiating the
connection.

sourceIp: The IP address of the node initiating the connection. If the address is IPv4, it
should be prefixed by 80 bits of zeros and 16 bits of ones, bitmasking it such that it fits the
IPv4 reserved space in IPv6. For example, ::ffff:127.0.0.1.

sourceEnodePort: The peer-to-peer listening port of the node initiating the connection.

destinationEnodeHigh: The high (first) 32 bytes of the enode address of the node
receiving the connection.

destinationEnodeLow: The low (last) 32 bytes of the enode address of the node receiving
the connection.

destinationIp: The IP address of the node receiving the connection. If the address is IPv4,
it should be prefixed by 80 bits of zeros and 16 bits of ones, bitmasking it such that it fits the
IPv4 reserved space in IPv6. For example, ::ffff:127.0.0.1.

destinationEnodePort: The peer-to-peer listening port of the node receiving the
connection.

result: A bitmask of the permissions granted for this connection.

addsRestrictions: If the rules change that caused the NodePermissionsUpdated event
to be emitted involves further restricting existing permissions, this will be true. Otherwise it
will be false.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 31 of 68

addsPermissions: If the rules change that caused the NodePermissionsUpdated event to
be emitted involves granting new permissions, this will be true. Otherwise it will be false.

While the core premise of node permissioning is whether a connection is allowed to occur or not,
there are additional restrictions that can be imposed on a connection between two nodes based on
the permitted behavior of the nodes.

The various permissions that can be granted to a connection are represented by bits being set in the
bitmask response from connectionAllowed. Where bits are unset, the client restricts the
behavior of the remote node according to the unset bits.

The remaining bits in the response are normally set to one. If any of the remaining bits are zero, an
unknown permission restriction was placed on the connection and the connection will be denied.
These unknown zeros are likely to represent permissions defined in future versions of this
specification. Where they cannot be interpreted by a client the connection is rejected.

Connection Permitted

Permission Bit Index: 0

The connection is allowed to be established.

A client connecting to a chain that maintains a permissioning contract finds the address of the
contract in the network configuration. When a peer connection request is received, or a new
connection request initiated, the permissioning contract is queried to assess whether the connection
is permitted. If permitted, the connection is established and when the node is queried for peer
discovery, this connection can be advertised as an available peer. If not permitted, the connection is
either refused or not attempted, and the peer excluded from any responses to peer discovery
requests.

During client startup and initialization the client will be begin at a bootnode and initially have a
global state that is out of sync. Until the client reaches a trustworthy head it is unable to reach a
current version of the node permissioning that correctly represents the current blockchain's state.

6.3.3.3.2 NODE PERMISSIONS

6.3.3.3.3 CLIENT IMPLEMENTATION

6.3.3.3.4 CHAIN INITIALIZATION

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 32 of 68

At the genesis block an initial permissioning contract will normally be included in block 0,
configured so the initial nodes are able to establish connections to each other.

Account permissioning controls which accounts are able to send transactions and the type of
transactions permitted.

[P] PERM-240: When validating or mining a block, Enterprise Ethereum clients MUST call the
transactionAllowed function, as specified in Section § 6.3.3.4.1 Account Permissioning
Function, with worldstate as at the block's parent, or if it implements [PERM-250](#req-perm-
250)] and [PERM-260](#req-perm-260)] MAY use cached information, to determine if a
transaction is permitted in a block.

[P] PERM-250: On receipt of an AccountPermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST purge all
cached results from previous calls to transactionAllowed where the result returned was true.

[P] PERM-260: On receipt of an AccountPermissionsUpdated event containing an
addsPermissions property with the value true, Enterprise Ethereum clients MUST purge all
cached results from previous calls to transactionAllowed where the result returned was false.

The transactionAllowed function is found at the address given by the
transactionPermissionContract parameter in the network configuration. It implements the
following interface, including the AccountPermissionsUpdated event:

6.3.3.4 Account Permissioning

6.3.3.4.1 ACCOUNT PERMISSIONING FUNCTION

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 33 of 68

Interface
[
 {
 "name": "transactionAllowed",
 "stateMutability": "view",
 "type": "function",
 "inputs": [
 {
 "name": "sender",
 "type": "address"
 },
 {
 "name": "target",
 "type": "address"
 },
 {
 "name": "value",
 "type": "uint256"
 },
 {
 "name": "gasPrice",
 "type": "uint256"
 },
 {
 "name": "gasLimit",
 "type": "uint256"
 },
 {
 "name": "payload",
 "type": "bytes"
 }
],
 "outputs": [
 {
 "name": "result",
 "type": "bool"
 }
]
 },
 {
 "type": "event",
 "name": "AccountPermissionsUpdated",
 "inputs": [
 {
 "name": "addsRestrictions",
 "type": "bool",
 "indexed": false

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 34 of 68

 },
 {
 "name": "addsPermissions",
 "type": "bool",
 "indexed": false
 }
]
 }
]

Arguments

sender: The address of the account that created this transaction.

target: The address of the account or contract that this transaction is directed at. For a
creation contract where there is no target, this should be zero filled to represent the null
address.

value: The eth value being transferred in this transaction.

gasPrice: The gas price included in this transaction

gasLimit: The gas limit in this transaction.

payload: The payload in this transaction. Either empty if a simple value transaction, the
calling payload if executing a contract, or the EVM code to be deployed for a contract
creation.

result: A Boolean value representing whether the transaction should be allowed and
considered valid.

addsRestrictions: If the rules change that caused the AccountPermissionsUpdated
event to be emitted involves further restricting existing permissions, this will be true.

addsPermissions: If the rules change that caused the AccountPermissionsUpdated
event to be emitted grants new permissions, this will be true.

A client connecting to a chain that maintains a permissioning contract can find address of the
transactionAllowed function in the transactionPermissionContract parameter of the
network configuration.

When mining new blocks the node checks the validity of transactions using the appropriate
permissioning contract with the state at the block's parent. If not permitted, the transaction is
discarded. If permitted, the transaction is included in the new block and the block dispatched to
other nodes.

6.3.3.4.2 CLIENT IMPLEMENTATION

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 35 of 68

When receiving a block the node checks each included transaction using the permissioning contract
with the state at the block's parent. If any transactions in the new block are not permitted, the block
is considered invalid and discarded. If all transactions are permitted, the block passes the
permissioning validation check and is then subject to any other validity assessments the client
might usually perform.

Depending on the use case of a client, the implementation can also check validity of transactions
submitted through RPC methods or received through peer-to-peer communication. For such
validation, it is expected that the contracts are used with the state represented at the current head.

Reading of a contract is an unrestricted operation.

When a transaction is checked by the contract it can be assessed by any of the fields provided to
restrict operations, such as transferring value between accounts, rate limiting spend or receipt of
value, restricting the ability to execute code at an address, limiting gas expenditure or enforcing a
minimum expenditure, or restricting the scope of a created contract.

When checking the execution of code at an address, it can be useful to be aware of the
EXTCODEHASH EVM operation, which allows for checking whether there is code present to be
executed at the address that received the request.

For restricting the scope of created contracts it might be necessary to do static code analysis of the
EVM bytecode payload for properties that are not allowed. For example, restricting creation of
contracts that employ the create contract opcode.

At the genesis block the permissioning contract function is included in block 0, configured so
initial accounts can perform required value transactions, a predetermined set of accounts can
invoke the contracts defined in the genesis file, and if desired, a predetermined set of accounts can
create new contracts.

This section is non-normative.

With the rapid expansion in the number of different blockchains and ledgers, inter-chain
mediators allow interaction between these blockchains. Like other solutions that provide privacy

6.3.3.4.3 CONTRACT IMPLEMENTATION

6.3.3.4.4 CHAIN INITIALIZATION

6.3.4 Inter-chain

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 36 of 68

and scalability, inter-chain mediators can be built in Layer 2, such as using public Ethereum to
anchor state as needed for tracking and checkpoints.

In many situations, smart contracts need to interact with real-world information to operate. An
oracle is a service external to either public Ethereum or an Enterprise Ethereum client that is
trusted by the creators of smart contracts and is called to provide information, such as a current
exchange rate, or the result of a mathematical calculation. Oracles are a secure bridge between
smart contracts and real-world information sources.

[C] ORCL-010: Enterprise Ethereum clients SHOULD provide the ability to securely interact with
oracles to send and receive external off-chain information.

Along with permissioning, the "3 Ps" of Enterprise Ethereum include privacy and performance.
This layer describes the extensions in Enterprise Ethereum that support these requirements.

Privacy and performance solutions are broadly categorized into:

Layer 1 solutions, which are implemented at the base level protocol layer using techniques
such as [sharding] and easy parallelizability [EIP-648].

Layer 2 solutions, which do not require changes to the base level protocol layer. They are
implemented at the application protocol layer, for example using [Plasma], [state-channels],
and Off-Chain Trusted Computing mechanisms.

Many use cases for Enterprise Ethereum blockchains have to comply with regulations related to
privacy. For example, banks in the European Union are required to comply with the European
Union revised Payment Services Directive [PSD2] when providing payment services, and the
General Data Protection Regulation [GDPR] when storing personal data regarding individuals.

Enterprise Ethereum clients support privacy with various techniques including private transactions
and enabling an Enterprise Ethereum blockchain to permit anonymous participants. They can also
support privacy-enhanced Off-Chain Trusted Computing.

Various new privacy mechanisms are being explored as extensions to public Ethereum, such as
zero-knowledge proofs [ZKP], a cryptographic technique where one party (the prover) can prove
to another party (the verifier) that the prover knows a value , without conveying any information

6.3.5 Oracles

7. Enterprise 3 P's Layer

7.1 Privacy Sublayer

x
©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 37 of 68

apart from the fact that the prover knows the value. [ZK-STARKS] is an example of a zero-
knowledge proof method.

A transaction is a core component of most blockchains, including Public Ethereum as well as
Enterprise Ethereum. It is a request to execute operations that change the state of one or more
accounts. Nodes processing transactions is the fundamental basis of adding blocks to the
chain.

A private transaction is a transaction where some information about the transaction, such as
the payload data, or the sender or the recipient, is only available to the subset of parties privy
to that transaction.

Enterprise Ethereum clients support at least one form of private transaction, as outlined in Section
§ 7.1.3 Private Transactions. Private transactions can be realized in various ways, controlling which
nodes see which private transactions or transaction data.

Enterprise Ethereum implementations can also support off-chain Trusted Computing, enabling
privacy during code execution.

This section is non-normative.

Various on-chain techniques can improve the security and privacy capabilities of Enterprise
Ethereum blockchains.

NOTE: On-chain Security Techniques

Future on-chain security techniques could include techniques such as [ZK-STARKS], range
proofs, or ring signatures.

This section is non-normative.

Off-chain trusted computing uses a privacy-enhanced system to handle some of the computation
requested by a transactions. Such systems can be hardware-based, software-based, or a hybrid,
depending on the use case.

The EEA has developed Trusted Computing APIs for Ethereum-compatible trusted computing
[EEA-OC], and requirement EXEC-050 enables Enterprise Ethereum clients to use them for
improved privacy.

7.1.1 On-chain

7.1.2 Off-chain (Trusted Computing)

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 38 of 68

private transactions specify their preferred type at runtime with the restriction parameter on
their [JSON-RPC-API] calls. The two defined private transaction types are:

Restricted private transactions, where payload data is transmitted to and readable only by the
parties to the transaction.

Unrestricted private transactions, where encrypted payload data is transmitted to all nodes in
the Enterprise Ethereum blockchain, but readable only by the parties to the transaction.

[P] PRIV-010: Enterprise Ethereum clients MUST support one of restricted private transactions or
unrestricted private transactions.

Transaction information consists of two parts:

Metadata, which is the set of data that describes and gives information about the payload data
in a transaction. Metadata is the envelope information necessary to execute a transaction.

Payload data, which is the content of the data field of a transaction, usually obfuscated in
private transactions. Payload data is separate from the metadata in a transaction.

If implementing restricted private transactions:

[P] PRIV-020: Enterprise Ethereum clients MUST encrypt payload data when stored in
restricted private transactions.

[P] PRIV-030: Enterprise Ethereum clients MUST encrypt payload data when in transit in
restricted private transactions.

[P] PRIV-040: Enterprise Ethereum clients MAY encrypt metadata when stored in restricted
private transactions.

[P] PRIV-050: Enterprise Ethereum clients MAY encrypt metadata when in transit in
restricted private transactions.

[P] PRIV-060: Nodes that relay a restricted private transaction, but are not party to that
transaction, MUST NOT store the payload data.

[P] PRIV-070: Nodes that relay a restricted private transaction, but are not party to that
transaction, SHOULD NOT store the metadata.

[P] PRIV-080: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or
eea_sendRawTransaction methods (see Section § 6.3.2 Extensions to the JSON-RPC API)
with the restriction parameter set to restricted, MUST result in a restricted private
transaction.

7.1.3 Private Transactions

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 39 of 68

NOTE: Restricted Private Transactions

Private transactions can be implemented by creating private channels, that is, private smart
contracts where the payload data is only stored by the clients participating in a transaction, and
not by any other client (despite that the payload data might be encrypted and only decodable by
authorized parties).

Private transactions are kept private between related parties, so unrelated parties have no access
to the content of the transaction, the sending party, or the addresses of accounts party to the
transaction. In fact, a private smart contract has a similar relationship to the blockchain that
hosts it as a private blockchain that is only replicated and certified by a subset of participating
nodes, but is notarized and synchronized on the hosting blockchain. This private blockchain is
thus able to refer to data in less restrictive private smart contracts, as well as in public smart
contracts.

If implementing unrestricted private transactions:

[P] PRIV-090: Enterprise Ethereum clients SHOULD encrypt the recipient identity when
stored in unrestricted private transactions.

[P] PRIV-100: Enterprise Ethereum clients SHOULD encrypt the sender identity when stored
in unrestricted private transactions.

[P] PRIV-110: Enterprise Ethereum clients SHOULD encrypt the payload data when stored in
unrestricted private transactions.

[P] PRIV-120: Enterprise Ethereum clients MUST encrypt payload data when in transit in
unrestricted private transactions.

[P] PRIV-130: Enterprise Ethereum clients MAY encrypt metadata when stored in unrestricted
private transactions.

[P] PRIV-140: Enterprise Ethereum clients MAY encrypt metadata when in transit in
unrestricted private transactions.

[P] PRIV-150: Nodes that relay an unrestricted private transaction, but are not party to that
transaction, MAY store the payload data.

[P] PRIV-160: Nodes that relay an unrestricted private transaction, but are not party to that
transaction, MAY store the metadata.

[P] PRIV-170: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or
eea_sendRawTransaction methods (see Section § 6.3.2 Extensions to the JSON-RPC API)
with the restriction parameter set to unrestricted MUST result in an unrestricted
private transaction.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 40 of 68

[P] PRIV-210: Enterprise Ethereum clients' implementation of unrestricted private
transactions MUST provide the ability for nodes to achieve global consensus.

NOTE: Unrestricted Private Transactions

Obfuscated data that is replicated across all nodes can be reconstructed by any node, albeit in
encrypted form. Mathematical transactions on numerical data are intended to be validated by
the underlying Enterprise Ethereum blockchain on a zero-knowledge basis. The plaintext
content is only available to participating parties to the transaction. Thus, a node is expected to
have the ability to maintain and transact against numerical balances certified by the whole
community of validators on a zero-knowledge basis.

An alternative to the zero-knowledge approach could be the combined use of ring signatures,
stealth addresses, and mixing, which is demonstrated to provide the necessary level of
obfuscation that is mathematically impossible to penetrate and does not rely on the trusted
setup required by ZK-SNARKS.

[P] PRIV-180: Enterprise Ethereum clients SHOULD be able to extend the set of parties privy to a
private transaction (or forward the private transaction in some way).

[P] PRIV-190: Enterprise Ethereum clients SHOULD provide the ability for nodes to achieve
consensus on their mutually private transactions.

The differences between restricted private transactions and unrestricted private transactions are
summarized in the table below.

Table 2 Restricted and Unrestricted Private Transactions

Restricted Private TXNs (if implemented)
Unrestricted Private TXNs (if
implemented)

Metadata Payload Data Metadata Payload Data

MAY encrypt MUST encrypt

MAY encrypt

SHOULD encrypt
sender and recipient
identity

MUST encrypt in
transit

SHOULD encrypt in
storage

SHOULD NOT allow
storage by non-
participating nodes

MUST NOT allow
storage by non-
participating nodes

MAY allow storage
by non-participating
nodes

MAY allow storage
by non-participating
nodes

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 41 of 68

This section is non-normative.

A privacy group is the collection of participants privy to a private transaction. Each member of the
group has the ability to decrypt and read a private transaction sent to the group.

An Enterprise Ethereum client maintains the public world state for the blockchain and a private
state for each privacy group. The private states contain data that is not shared in the globally
replicated world state. A private transaction causes a state transition in the public state (that is, a
commitment of a private transaction occurred) and a state transition in the private state (that is, a
smart contract state was changed or some information was exchanged in the private state).

The privateFrom and privateFor parameters in the send transaction calls are the public keys
for the participants intended to be able to decrypt the private transaction. A privacy group is given
a unique privacy group ID. Members of a privacy group are specified by their public keys.

A client is expected to propagate a newly created or updated privacy group to the other members
which are part of the privacy group.

This section is non-normative.

Performance is an important requirement for Enterprise Ethereum clients as many use cases for
Enterprise Ethereum blockchains imply a high volume of transactions, or computationally heavy
tasks. A blockchain's overall performance is constrained by the slowest node.

There are many different aspects of performance. Instead of mandating specific requirements, this
Specification notes the importance of performance, leaving Enterprise Ethereum client developers
free to implement whatever strategies are appropriate for their software.

7.1.4 Privacy Groups

EXAMPLE 2: Privacy Group example object

{
 “name”: “my privacy group”
 “privacyGroupId”: “Vbj70zF+G2V/8XoyZzwqawfcQ+r9BkXoLQOqkQideys=”
 “members”: [
 “negmDcN2P4ODpqn/6WkJ02zT/0w0bjhGpkZ8UP6vARk=”,
 “g59BmTeJIn7HIcnq8VQWgyh/pDbvbt2eyP0Ii60aDDw=”
]
 “description”: “this is an example privacy group”
}

7.2 Performance Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 42 of 68

This Specification does not constrain experimentation to improve the performance of Enterprise
Ethereum clients. This is an active area of research, and it is likely various techniques to improve
performance will be developed over time, which cannot be exactly predicted.

This Specification does mandate or allow for several optimizations to improve performance. The
most important techniques maximize the throughput of transactions.

Techniques to improve performance through scaling are valuable for blockchains with high
transaction throughput requirements that keep the processing on the blockchain.

On-chain (layer 1) scaling techniques, like [sharding], are changes or extensions to the public
Ethereum protocol to facilitate increased transaction speeds.

On-chain (layer 2) scaling techniques use smart contracts, and approaches like [Plasma], or [state-
channels], to increase transaction speed without changing the underlying Ethereum protocol. For
more information, see [Layer2-Scaling-Solutions].

Off-chain Computing can be used to increase transaction speeds, by moving the processing of
computationally intensive tasks from nodes processing transactions to one or more Trusted
Computing services, reducing the resources needed by nodes and allowing them to produce blocks
faster. This functionality can be implemented by Enterprise Ethereum clients implementing
requirement EXEC-050.

Permissioning is the property of a system that ensures operations are executed by and accessible to
designated parties. For Enterprise Ethereum, permissioning refers to the ability of a node to join an
Enterprise Ethereum blockchain, and the ability of individual accounts or nodes to perform specific
functions. For example, an Enterprise Ethereum blockchain might only allow certain nodes to act
as validators, and only certain accounts to instantiate smart contracts.

Enterprise Ethereum provides a permissioned implementation of Ethereum supporting peer node
connectivity permissioning, account permissioning, and transaction type permissioning.

7.2.1 On-chain (Layer 1 and Layer 2) Scaling

7.2.2 Off-chain (Layer 2 Compute)

7.3 Permissioning Sublayer

7.3.1 Nodes

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 43 of 68

[C] NODE-010: Enterprise Ethereum implementations MUST provide the ability to specify at
startup a list of static peer nodes to establish peer-to-peer connections with.

[C] NODE-020: Enterprise Ethereum clients MUST provide the ability to enable or disable peer-
to-peer node discovery.

[P] NODE-030: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of the
nodes permitted to connect to a node.

[P] NODE-080: Enterprise Ethereum clients MUST provide the ability to specify node identities in
a way aligned with the concept of groups.

[P] NODE-090: Enterprise Ethereum clients MUST document which metadata parameters (if any)
can affect transaction ordering, and what the effects are.

For the purpose of this Specification:

An organization is a logical group composed of Ethereum accounts, nodes, and other
organizations or suborganization. A suborganization is an organization controlled by and
subordinate to another organization. An organization typically represents an enterprise, or
some identifiable part of an enterprise. For the purpose of permissioning, organizations
roughly correspond to the UNIX concept of groups.

A user is a human or an automated process interacting with an Enterprise Ethereum
blockchain using the Ethereum JSON-RPC API. The identity of a user is represented by an
Ethereum account. Public key cryptography is used to sign transactions made by the user so
the EVM can authenticate the identity of a user sending a transaction.

An Ethereum account is an established relationship between a user and an Ethereum
blockchain. Having an Ethereum account allows users to interact with a blockchain, for
example to submit transactions or deploy smart contracts. See also wallet.

Groups are collections of users that have or are allocated one or more common attributes. For
example, common privileges allowing users to access a specific set of services or
functionality.

Roles are sets of administrative tasks, each with associated permissions that apply to users or
administrators of a system, used for example in RBAC permissioning contracts.

[P] PART-010: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of
accounts that are permitted to transact with the blockchain.

[P] PART-015: Enterprise Ethereum clients MUST be able to verify that accounts are present on
the whitelist required by PART-010: when adding transactions from the account to a block, and

7.3.2 Ethereum Accounts

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 44 of 68

when verifying a received block containing transactions created by that account.

[P] PART-050: Enterprise Ethereum clients MUST provide a mechanism to identify organizations
that participate in the Enterprise Ethereum blockchain.

NOTE

A specific mechanism to identify organizations could be identified in a future version of this
Specification.

[P] PART-055 Enterprise Ethereum clients MUST support anonymous accounts.

[P] PART-060: Enterprise Ethereum clients MUST provide the ability to specify accounts in a way
aligned with the concepts of groups and roles.

[P] PART-070: Enterprise Ethereum clients MUST be able to authorize the types of transactions an
account can submit, providing separate permissioning for the ability to:

Deploy smart contracts.

Call functions that change the state of specified smart contracts.

Perform a value transfer to a specified account.

NOTE

Because deep nesting of structures can introduce unacceptable performance issues,
implementations can limit the number of nesting levels they enable. This Specification defines
a minimum requirement, although in practice the number of levels implementations support is
not constrained to any specific value, and depends entirely on implementation choices.

[C] PERM-075: Enterprise Ethereum clients MUST allow organizations to be nested to a
minimum of three levels. That is, an organization that contains an organization that contains
another organization.

[C] PERM-020: Enterprise Ethereum clients SHOULD provide the ability for network
configuration to be updated at run time without the need to restart.

7.3.3 Additional Permissioning Requirements

8. Core Blockchain Layer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 45 of 68

The Consensus sublayer provides a mechanism to establish consensus between nodes.

Consensus is the process of nodes on a blockchain reaching agreement about the current state of
the blockchain.

A consensus algorithm is the mechanism by which a blockchain achieves consensus. Different
blockchains can use different consensus algorithms, but all nodes of a given blockchain need to use
the same consensus algorithm. Different consensus algorithms are available for both public
Ethereum and Enterprise Ethereum.

Enterprise Ethereum clients can provide additional consensus algorithms for operations within their
private consortium network (an Ethereum blockchain, either public Ethereum or Enterprise
Ethereum, which is not part of the Ethereum MainNet).

The Execution sublayer implements the Ethereum Virtual Machine (EVM), which is a runtime
computing environment for the execution of smart contracts. Each node operates an EVM.

Ethereum-flavored WebAssembly [eWASM], which has its own instruction set, and other
computational capabilities as required, are implemented at this layer.

Smart contracts are computer programs that the EVM executes. Smart contracts can be written in
higher-level programming languages and compiled to EVM bytecode. Smart contracts can
implement a contract between parties, where the execution is guaranteed and auditable to the level
of security provided by Ethereum itself.

A precompiled contract is a smart contract compiled in EVM bytecode and stored by a node.

Finally, the Storage and Ledger sublayer is provided to store the blockchain state, such as smart
contracts for later execution. This sublayer follows blockchain security paradigms such as using
cryptographically hashed tries, a UTXO model, or at-rest-encrypted key-value stores.

To operate a client on the Ethereum MainNet, and to support optional off-chain operations, local
data storage is required. For example, Enterprise Ethereum clients can locally cache the results

EXAMPLE 3: Consensus Algorithms

An example public consensus algorithm is the Proof of Work (PoW) algorithm, which is
described in the [Ethereum-Yellow-Paper]. Over time, PoW is likely to be phased out from use
and replaced with new methods of consensus. Other example consensus algorithms include
Istanbul [Byzantine-Fault-Tolerant] (IBFT) [EIP-650], [RAFT], and Proof of Elapsed Time
[PoET].

8.1 Storage and Ledger Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 46 of 68

from a trusted oracle or store information related to systems extensions that are beyond the scope
of this Specification.

[C] STOR-030: Enterprise Ethereum clients providing support for multiple blockchains (for
example, more than one Enterprise Ethereum blockchain, or a public network) MUST store data
related to restricted private transactions for those blockchains in private state dedicated to the
relevant blockchain.

Private State is the state data that is not shared in the clear in the globally replicated state tree. This
data can represent bilateral or multilateral arrangements between parties, for example in private
transactions.

[P] STOR-040: Enterprise Ethereum clients SHOULD permit a smart contract operating on private
state to access private state created by other smart contracts involving the same parties to the
transaction.

[P] STOR-050: Enterprise Ethereum clients MUST NOT permit a smart contract operating on
private state to access private state created by other smart contracts involving different parties to
the transaction.

[P] STOR-070: If an Enterprise Ethereum client stores private state persistently, it SHOULD
protect the data using an Authenticated Encryption with Additional Data (AEAD) algorithm, such
as one described in [RFC5116].

[P] EXEC-010: Enterprise Ethereum clients MUST provide a smart contract execution
environment implementing the public Ethereum EVM opcode set [EVM-Opcodes].

[P] EXEC-020: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] MUST register the opcode and
the name of the Enterprise Ethereum client in the [EEA-extended-opcode-registry].

[P] EXEC-025: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] SHOULD register a description
of the new functionality, and a URL for a complete specification and test suites in the [EEA-
extended-opcode-registry], and create an EIP describing the new opcode.

[P] EXEC-030: Enterprise Ethereum clients SHOULD support the ability to synchronize their
public state with the public state held by other public Ethereum nodes.

[P] EXEC-040: Enterprise Ethereum clients SHOULD support compilation, storage, and execution
of precompiled contracts.

8.2 Execution Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 47 of 68

Trusted Computing ensures only authorized parties can execute smart contracts on an execution
environment available to a given Enterprise Ethereum blockchain.

[C] EXEC-050: Enterprise Ethereum clients MAY support off-chain Trusted Computing

Multiple encryption techniques can be used to secure Trusted Computing and private state.

[C] EXEC-060: Enterprise Ethereum clients MAY support configurable alternative cryptographic
curves as encryption options for Enterprise Ethereum blockchains.

Finality occurs when a transaction is definitively part of the blockchain and cannot be removed. A
transaction reaches finality after some event defined for the relevant blockchain occurs. For
example, an elapsed amount of time or a specific number of blocks added.

[P] FINL-010: When a deterministic consensus algorithm is used, Enterprise Ethereum clients
SHOULD treat transactions as final after a defined interval or event. For example, after a defined
time period has elapsed, or after a defined number of blocks were created since the transaction was
included in a block.

A common consensus algorithm implemented by all clients is required to ensure interoperability
between clients.

[Byzantine-Fault-Tolerant] consensus algorithms ensure a certain proportion of malfunctioning
nodes performing voting, block-making, or validation roles do not pose a critical risk to the
blockchain. This makes them an excellent choice for many blockchains. The Technical
Specification Working Group are considering existing and new Byzantine-Fault-Tolerant consensus
algorithms, primarily those related to IBFT [EIP-650], with the goal of adopting the outcomes of
that work as a required consensus algorithm as soon as possible.

[P] CONS-030: One or more consensus algorithms SHOULD allow operations as part of an
Enterprise Ethereum blockchain.

[P] CONS-050: Enterprise Ethereum clients MAY implement multiple consensus algorithms and
use them on sidechain networks.

A sidechain is a separate Ethereum blockchain operating on the Enterprise Ethereum blockchain
nodes. A sidechain can be public or private and can also operate on a consortium network.

8.2.1 Finality

8.3 Consensus Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 48 of 68

https://github.com/entethalliance/enhanced-bft

[P] CONS-093: Enterprise Ethereum clients MUST support the Clique, Proof of Authority
consensus algorithm [EIP-225].

[P] CONS-110: Enterprise Ethereum clients MUST provide the ability to specify the consensus
algorithms, through network configuration, to be used for each public blockchain, private
blockchain, and sidechain in use.

The Network layer consists of an implementation of a peer-to-peer networking protocol allowing
nodes to communicate with each other. For example, the DEVp2p protocol, which defines
messaging between nodes to establish and maintain a communications channel for use by higher
layer protocols.

Network protocols define how nodes communicate with each other.

[P] PROT-010: Nodes MUST be identified and advertised using the Ethereum [enode] URL
format.

[P] PROT-015: Enterprise Ethereum clients MUST implement the [DEVp2p-Node-Discovery]
protocol.

The [Ethereum-Wire-Protocol] defines higher layer protocols, known as capability protocols, for
messaging between nodes to exchange status, including block and transaction information.
[Ethereum-Wire-Protocol] messages are sent and received over an already established DEVp2p
connection between nodes.

[P] PROT-020: Enterprise Ethereum clients MUST use the [DEVp2p-Wire-Protocol] for
messaging between nodes to establish and maintain a communications channel for use by
capability protocols.

[P] PROT-040: Enterprise Ethereum clients MAY add new protocols or extend existing Ethereum
protocols.

[P] PROT-050: To minimize the number of point-to-point connections needed between private
nodes, some private nodes SHOULD be capable of relaying private transaction data to multiple
other private nodes.

9. Network Layer

9.1 Network Protocol Sublayer

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 49 of 68

[P] PROT-060: Enterprise Ethereum clients SHOULD implement the [Whisper-protocol].

[P] PROT-070: Enterprise Ethereum clients MUST interpret the [parameters defined in this
specification](#sec-code-definitions) for network configuration when found in a genesis.json file.

Network configuration refers to the [collection of settings defined for a blockchain](#sec-code-
definitions), such as which consensus algorithm to use, or the addresses of permissioning contracts.
It is a set of parameters included as JSON data in a genesis.json file.

This section refers to mechanisms to prevent the Enterprise Ethereum blockchain being degraded
with a flood of intentional or unintentional transactions. This might be realized through interfacing
with an external security manager, as described in Section § 6.2.1 Enterprise Management Systems,
or implemented by the client, as described in the following requirement.

[P] SPAM-010: Enterprise Ethereum clients SHOULD provide effective anti-spam mechanisms so
attacking nodes or accounts (either malicious, buggy, or uncontrolled) can be quickly identified and
stopped.

EXAMPLE 4: Relaying Private Transaction Data

Multi-party private smart contracts and transactions do not require direct connectivity between
all parties because this is very impractical in enterprise settings, especially when many parties
are allowed to transact. Nodes common to all parties (for example, voters or blockmakers
acting as bootnodes to all parties, and as backup or disaster recovery nodes) are intended to
function as gateways to synchronize private smart contracts transparently. Transactions on
private smart contracts could then be transmitted to all participating parties in the same way.

10. Anti-spam

EXAMPLE 5: Anti-spam Mechanisms

Anti-spam mechanisms might include:

Stopping parties attempting to issue transactions above a threshold volume.

Providing a mechanism to enforce a cost for gas, so transacting parties have to acquire and
pay for (or destruct) private ether to transact.

Having a dynamic cost of gas based on activity intensity.

11. Cross-client Compatibility
©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 50 of 68

Cross-client compatibility refers to the ability of an Enterprise Ethereum blockchain to operate
with different clients.

This Specification extends the capabilities and interfaces of public Ethereum. The requirements
relating to supporting and extending the public Ethereum opcode set are outlined in Section § 8.2
Execution Sublayer.

[P] XCLI-005: Features of public Ethereum implemented in Enterprise Ethereum clients MUST be
compatible with the Constantinople hard fork of Ethereum [EIP-1013], which occurred on 28
February, 2019.

Future versions of this Specification are expected to align with newer versions of public Ethereum
as they are deployed.

[P] XCLI-020: Enterprise Ethereum clients MAY extend the public Ethereum APIs. To maintain
compatibility, Enterprise Ethereum clients SHOULD ensure these new features are a superset of the
public Ethereum APIs.

[P] XCLI-030: Enterprise Ethereum clients MUST implement the gas mechanism specified in the
[Ethereum-Yellow-Paper].

[P] XCLI-040: Enterprise Ethereum clients MUST function correctly when the Gas price is set to
zero.

[P] XCLI-050: Enterprise Ethereum clients MUST implement the eight precompiled contracts
defined in Appendix E of the [Ethereum-Yellow-Paper]:

ecrecover

sha256hash

ripemd160hash

dataCopy

bigModExp

bn256Add

bn256ScalarMul

bn256Pairing

EXAMPLE 6: Extensions to the Public Ethereum API

Extensions to public Ethereum APIs could include peer-to-peer APIs, the [JSON-RPC-API]
over IPC, HTTP/HTTPS, or websockets.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 51 of 68

NOTE

Sample [implementation-code-in-Golang], as part of the Go-Ethereum client is available from
the Go-Ethereum source repository [geth-repo]. Be aware this code uses a combination of
GPL3 and LGPL3 licenses

Cross-client compatibility extends to the different message encoding formats used by clients.

[P] XCLI-055: Enterprise Ethereum clients MUST register precompiled contracts following the
mechanisms defined by [EIP-1352]:

[P] XCLI-060: Enterprise Ethereum clients MUST support the Contract Application Binary
Interface ([ABI]) for interacting with smart contracts.

[P] XCLI-070: Enterprise Ethereum clients MUST support Recursive Length Prefix ([RLP])
encoding for binary data.

This section is non-normative.

Cross-chain interoperability broadly refers to the ability to consume data from another chain
(read) and to cause an update or another transaction on a distinct chain (write).

Cross-chain interoperability can take two forms:

Ethereum to Ethereum (for example, two or more logically distinct EVM-based chains)

Ethereum to another blockchain architecture.

Cross-chain interoperability is seen as a valuable feature by both the Enterprise Ethereum
community and outside. Users of blockchain and blockchain-inspired platforms want to make use
of data and functionality on heterogenous platforms.

The goals for cross-chain interoperability in this specification are to:

Describe the layers of interoperability that are relevant to Enterprise Ethereum blockchains.

Enable data consumption between different blokchains without using a trusted intermediary.

Allow transaction execution across blockchains without a trusted intermediary.

12. Cross-chain Interoperability

13. Synchronization and Disaster Recovery

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 52 of 68

This section is non-normative.

Synchronization and disaster recovery refers to how nodes in a blockchain behave when
connecting for the first time or reconnecting.

Various techniques can help do this efficiently. For an Enterprise Ethereum blockchain with few
copies, off-chain backup information can be important to ensure the long-term existence of the
information stored. A common backup format helps increase client interoperability.

account see Ethereum account

account permissioning

capability protocols

Client requirements

Consensus

consensus algorithm

consortium network

cross-chain interoperability

ÐApps

DEVp2p

Enterprise Ethereum

Enterprise Ethereum blockchains

Enterprise Ethereum client

Ethereum account

Ethereum JSON-RPC API

Ethereum MainNet

Ethereum Name Service

Ethereum Virtual Machine

Finality

Formal verification

Gas

genesis block

Groups

hard fork block

hard fork

Integration libraries

inter-chain mediators

interoperability

MainNet

Metadata

network configuration

node

node permissioning

Off-chain trusted computing

oracle

organization

Payload data

permissioning contracts

permissioning enforcement

permissioning management

Permissioning

precompiled contract

A. Additional Information

A.1 Terms defined in this specification

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 53 of 68

addsPermissions parameter of permissionsUpdated events

addsRestrictions parameter of permissionsUpdated events

connectionAllowed function

nodePermissionContract network configuration parameter

AccountPermissionsUpdated event

NodePermissionsUpdated event

permissionsUpdated events

transactionAllowed function

transactionPermissionContract network configuration parameter

This section summarizes all of the requirements in this Specification into one section.

[P] SMRT-030: Enterprise Ethereum clients MUST support smart contracts of at least 24,576 bytes
in size.

[P] SMRT-040: Enterprise Ethereum clients MUST read and enforce a size limit for smart
contracts from the current network configuration (for example, from the genesis block).

[P] SMRT-050: If no contract size limit is specified in a genesis block, subsequent hard fork block,
or network configuration, Enterprise Ethereum clients MUST enforce a size limit on smart
contracts of 24,576 bytes.

Private State

private transaction

private transaction manager

Protocol requirements

Public Ethereum

Restricted private transactions

Roles

sidechain

Smart contract languages

Smart contracts

transaction

Unrestricted private transactions

User

Wallets

zero-knowledge proof

A.2 Events, functions, methods, parameters defined in this specification

A.3 Summary of Requirements

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 54 of 68

[P] JRPC-010: Enterprise Ethereum clients MUST provide support for the following Ethereum
JSON-RPC API methods:

net_version

net_peerCount

net_listening

eth_protocolVersion

eth_syncing

eth_coinbase

eth_hashrate

eth_gasPrice

eth_accounts

eth_blockNumber

eth_getBalance

eth_getStorageAt

eth_getTransactionCount

eth_getBlockTransactionCountByHash

eth_getBlockTransactionCountByNumber

eth_getCode

eth_sendRawTransaction

eth_call

eth_estimateGas

eth_getBlockByHash

eth_getBlockByNumber

eth_getTransactionByHash

eth_getTransactionByBlockHashAndIndex

eth_getTransactionByBlockNumberAndIndex

eth_getTransactionReceipt

eth_getUncleByBlockHashAndIndex

eth_getUncleByBlockNumberAndIndex

eth_getLogs.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 55 of 68

[P] JRPC-007: Enterprise Ethereum clients SHOULD implement [JSON-RPC-API] methods to be
backward compatible with the definitions given in version f4e6248 of the Ethereum JSON-RPC
API reference [JSON-RPC-API-vf4e6248], unless breaking changes were made and widely
implemented for the health of the ecosystem. For example, to fix a major security or privacy
problem.

[C] JRPC-015: Enterprise Ethereum clients MUST provide the capability to accept and respond to
JSON-RPC method calls over a websocket interface.

[C] JRPC-040: Enterprise Ethereum clients MUST provide an implementation of the
debug_traceTransaction method [debug-traceTransaction] from the Go Ethereum
Management API.

[C] JRPC-050: Enterprise Ethereum clients MUST implement the [JSON-RPC-PUB-SUB] API.

[P] JRPC-070: Enterprise Ethereum clients implementing additional nonstandard subscription
types for the [JSON-RPC-PUB-SUB] API MUST prefix their subscription type names with a
namespace prefix other than eea_.

[P] JRPC-080: The [JSON-RPC] method name prefix eea_ MUST be reserved for future use for
RPC methods specific to the EEA.

[P] JRPC-020: Enterprise Ethereum clients MUST provide one of the following sets of extensions
to create private transaction types defined in Section § 7.1.3 Private Transactions:

eea_sendTransactionAsync and eea_sendTransaction, or

eea_sendRawTransactionAsync and eea_sendRawTransaction.

[P] JRPC-030: The eea_sendTransactionAsync, eea_sendTransaction,
eea_sendRawTransactionAsync, and eea_sendRawTransaction methods MUST respond
with a [JSON-RPC] error response when an unimplemented private transaction type is requested.
The error response MUST have the -50100 and the Unimplemented private
transaction type.

[P] PERM-200: Enterprise Ethereum clients MUST call the connectionAllowed function, as
specified in Section § 6.3.3.3.1 Node Permissioning Functions, or if it implements PERM-220 and
PERM-230, MAY use cached information to determine whether a connection with another node is
permitted, and any restrictions to be placed on that connection.

[P] PERM-210: When checking the response to connectionAllowed, if any unknown
permissioning bits are found to be zero, Enterprise Ethereum clients MUST reject the connection.

[P] PERM-220: On receipt of a NodePermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST close any

code message

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 56 of 68

network connections that are no longer permitted, and impose newly added restrictions on any
network connections that have had restrictions added.

[P] PERM-230: On receipt of a NodePermissionsUpdated event containing an
addsPermissions property with the value false, Enterprise Ethereum clients MUST check
whether existing network connections have had their restrictions lifted and allow future actions that
are now permitted.

[P] PERM-240: When validating or mining a block, Enterprise Ethereum clients MUST call the
transactionAllowed function, as specified in Section § 6.3.3.4.1 Account Permissioning
Function, with worldstate as at the block's parent, or if it implements [PERM-250](#req-perm-
250)] and [PERM-260](#req-perm-260)] MAY use cached information, to determine if a
transaction is permitted in a block.

[P] PERM-250: On receipt of an AccountPermissionsUpdated event containing an
addsRestrictions property with the value true, Enterprise Ethereum clients MUST purge all
cached results from previous calls to transactionAllowed where the result returned was true.

[P] PERM-260: On receipt of an AccountPermissionsUpdated event containing an
addsPermissions property with the value true, Enterprise Ethereum clients MUST purge all
cached results from previous calls to transactionAllowed where the result returned was false.

[C] ORCL-010: Enterprise Ethereum clients SHOULD provide the ability to securely interact with
oracles to send and receive external off-chain information.

[P] PRIV-010: Enterprise Ethereum clients MUST support private transactions using either
restricted private transactions or unrestricted private transactions.

When implementing restricted private transactions:

[P] PRIV-020: Enterprise Ethereum clients MUST encrypt payload data when stored in
restricted private transactions.

[P] PRIV-030: Enterprise Ethereum clients MUST encrypt payload data when in transit in
restricted private transactions.

[P] PRIV-040: Enterprise Ethereum clients MAY encrypt metadata when stored in restricted
private transactions.

[P] PRIV-050: Enterprise Ethereum clients MAY encrypt metadata when in transit in
restricted private transactions.

[P] PRIV-060: Nodes that relay a restricted private transaction but are not party to that
transaction, MUST NOT store payload data.

[P] PRIV-070: Nodes that relay a restricted private transaction but are not party to that
transaction SHOULD NOT store the metadata.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 57 of 68

[P] PRIV-080: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or
eea_sendRawTransaction methods (see Section § 6.3.2 Extensions to the JSON-RPC API)
with the restriction parameter set to restricted, MUST result in a restricted private
transaction.

When implementing unrestricted private transactions:

[P] PRIV-090: Enterprise Ethereum clients SHOULD encrypt the recipient identity when
stored in unrestricted private transactions.

[P] PRIV-100: Enterprise Ethereum clients SHOULD encrypt the sender identity when stored
in unrestricted private transactions.

[P] PRIV-110: Enterprise Ethereum clients SHOULD encrypt the payload data when stored in
unrestricted private transactions.

[P] PRIV-120: Enterprise Ethereum clients MUST encrypt payload data when in transit in
unrestricted private transactions.

[P] PRIV-130: Enterprise Ethereum clients MAY encrypt metadata when stored in unrestricted
private transactions.

[P] PRIV-140: Enterprise Ethereum clients MAY encrypt metadata when in transit in
unrestricted private transactions.

[P] PRIV-150: Nodes that relay an unrestricted private transaction but are not party to that
transaction MAY store payload data.

[P] PRIV-160: Nodes that relay an unrestricted private transaction but are not party to that
transaction, MAY store the metadata.

[P] PRIV-170: The implementation of the eea_sendTransactionAsync,
eea_sendTransaction, eea_sendRawTransactionAsync, or
eea_sendRawTransaction methods (see Section § 6.3.2 Extensions to the JSON-RPC API)
with the restriction parameter set to unrestricted MUST result in an unrestricted
private transaction.

[P] PRIV-210: Enterprise Ethereum clients' implementations of unrestricted private
transactions MUST provide the ability for nodes to achieve global consensus.

[P] PRIV-180: Enterprise Ethereum clients SHOULD be able to extend the set of parties to a
private transaction (or forward the private transaction in some way).

[P] PRIV-190: Enterprise Ethereum clients SHOULD provide the ability for nodes to achieve
consensus on their mutually private transactions.

[C] NODE-010: Enterprise Ethereum clients MUST provide the ability to specify at startup a list of
static peer nodes to establish peer-to-peer connections with.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 58 of 68

[C] NODE-020: Enterprise Ethereum clients MUST provide the ability to enable or disable peer-
to-peer node discovery.

[P] NODE-030: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of the
nodes permitted to connect to a node.

[P] NODE-080: NODE-080: Enterprise Ethereum clients MUST provide the ability to specify
node identities in a way aligned with the concept of groups.

[P] NODE-090: Enterprise Ethereum clients MUST document which metadata parameters (if any)
can affect transaction ordering, and what the effects are.

[P] PART-010: Enterprise Ethereum clients MUST provide the ability to specify a whitelist of
accounts that are permitted to transact with the blockchain.

[P] PART-015: Enterprise Ethereum clients MUST be able to verify that accounts are present on
the whitelist required by PART-010: when adding transactions from the account to a block, and
when verifying a received block containing transactions created by that account.

[P] PART-050: Enterprise Ethereum clients MUST provide a mechanism to identify organizations
that participate in the Enterprise Ethereum blockchain.

[P] PART-055 Enterprise Ethereum clients MUST support anonymous accounts.

[P] PART-060: Enterprise Ethereum clients MUST provide the ability to specify accounts in a way
aligned with the concepts of groups and roles.

[P] PART-070: Enterprise Ethereum clients MUST be able to authorize the types of transactions an
account can submit, providing separate permissioning for the ability to:

Deploy smart contracts.

Call functions that change the state of specified smart contracts.

Perform a value transfer to a specified account.

[C] PERM-075: Enterprise Ethereum clients MUST allow organizations to be nested to a
minimum of three levels. That is, an organization that contains an organization that contains
another organization.

[C] PERM-020: Enterprise Ethereum clients SHOULD provide the ability for network
configuration to be updated at run time without the need to restart.

[C] STOR-030: Enterprise Ethereum clients providing support for multiple blockchains (for
example, more than one Enterprise Ethereum blockchain, or a public network) MUST store data
related to restricted private transactions for those blockchains in private state dedicated to the
relevant blockchain.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 59 of 68

[P] STOR-040: Enterprise Ethereum clients SHOULD permit a smart contract operating on private
state to access private state created by other smart contracts involving the same parties to the
transaction.

[P] STOR-050: Enterprise Ethereum clients MUST NOT permit smart contract operating on
private state to access private state created by other smart contracts involving different parties to
the transaction.

[P] STOR-070: If an Enterprise Ethereum client stores private state persistently, it SHOULD
protect the data using an Authenticated Encryption with Additional Data (AEAD) algorithm, such
as one described in [RFC5116].

[P] EXEC-010: Enterprise Ethereum clients MUST provide a smart contract execution
environment implementing the public Ethereum EVM opcode set [EVM-Opcodes].

[P] EXEC-020: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] MUST register the opcode and
name of the Enterprise Ethereum client in the [EEA-extended-opcode-registry].

[P] EXEC-025: Enterprise Ethereum clients that provide a smart contract execution environment
extending the public Ethereum EVM opcode set [EVM-Opcodes] SHOULD register a description
of the new functionality, and a URL for a complete specification and test suites in the [EEA-
extended-opcode-registry], and create an EIP describing the new opcode.

[P] EXEC-030: Enterprise Ethereum clients SHOULD support the ability to synchronize their
public state with the public state held by other public Ethereum nodes.

[P] EXEC-040: Enterprise Ethereum clients SHOULD support compilation, storage, and execution
of precompiled contracts.

[C] EXEC-050: Enterprise Ethereum clients MAY support off-chain Trusted Computing

[C] EXEC-060: Enterprise Ethereum clients MAY support configurable alternative cryptographic
curves as encryption options for Enterprise Ethereum blockchains.

[P] FINL-010: When a deterministic consensus algorithm is used, Enterprise Ethereum clients
SHOULD treat transactions as final after a defined interval or event. For example, after a defined
time period has elapsed, or after a defined number of blocks were created since the transaction was
included in a block.

[P] CONS-030: One or more consensus algorithms SHOULD allow operations as part of an
Enterprise Ethereum blockchain.

[P] CONS-050: Enterprise Ethereum clients MAY implement multiple consensus algorithms and
use them on sidechain networks.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 60 of 68

[P] CONS-093: Enterprise Ethereum clients MUST support the Clique, Proof of Authority
consensus algorithm [EIP-225].

[P] CONS-110: Enterprise Ethereum clients MUST provide the ability to specify the consensus
algorithms, through network configuration, to be used for each public blockchain, private
blockchain, and sidechain in use.

[P] PROT-010: Nodes MUST be identified and advertised using the Ethereum enode URL format
[enode].

[P] PROT-015: Enterprise Ethereum clients MUST implement the DEVp2p Node Discovery
protocol [DEVp2p-Node-Discovery].

[P] PROT-020: Enterprise Ethereum clients MUST use the DEVp2p Wire Protocol [DEVp2p-
Wire-Protocol] for messaging between nodes to establish and maintain a communications channel
for use by capability protocols.

[P] PROT-040: Enterprise Ethereum clients MAY add new protocols or extend existing Ethereum
protocols.

[P] PROT-050: To minimize the number of point-to-point connections needed between private
nodes, some private nodes SHOULD be capable of relaying private transaction data to multiple
other private nodes.

[P] PROT-060: Enterprise Ethereum clients SHOULD implement the [Whisper-protocol].

[P] PROT-070: Enterprise Ethereum clients MUST interpret the [parameters defined in this
specification](#sec-code-definitions) for network configuration when found in a genesis.json file.

[P] SPAM-010: Enterprise Ethereum clients SHOULD provide effective anti-spam mechanisms so
attacking nodes or accounts (either malicious, buggy, or uncontrolled) can be quickly identified and
stopped.

[P] XCLI-005: Features of public Ethereum implemented in Enterprise Ethereum clients MUST be
compatible with the Constantinople hard fork of Ethereum [EIP-1013], which occurred on 28
February, 2019.

[P] XCLI-020: Enterprise Ethereum clients MAY extend the public Ethereum APIs. To maintain
compatibility, Enterprise Ethereum clients SHOULD ensure these new features are a superset of the
public Ethereum APIs.

[P] XCLI-030: Enterprise Ethereum clients MUST implement the Gas mechanism specified in the
[Ethereum-Yellow-Paper].

[P] XCLI-040: Enterprise Ethereum clients MUST function correctly when the Gas price is set to
zero.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 61 of 68

[P] XCLI-050: Enterprise Ethereum clients MUST implement the eight precompiled contracts
defined in Appendix E of the [Ethereum-Yellow-Paper]:

ecrecover

sha256hash

ripemd160hash

dataCopy

bigModExp

bn256Add

bn256ScalarMul

bn256Pairing

[P] XCLI-055: Enterprise Ethereum clients MUST register precompiled contracts following the
mechanisms defined by [EIP-1352]:

[P] XCLI-060: Enterprise Ethereum clients MUST support the Contract Application Binary
Interface ([ABI]) for interacting with smart contracts.

[P] XCLI-070: Enterprise Ethereum clients MUST support Recursive Length Prefix ([RLP])
encoding for binary data.

The EEA acknowledges and thanks the many people who contributed to the development of this
version of the specification. Please advise us of any errors or omissions.

This version builds on the work of all who contributed to previous versions of the Enterprise
Ethereum Client Specification, whom we hope are all acknowledged in those documents. We
apologize to anyone whose name was left off the list. Please advise us at
https://entethalliance.org/contact/ of any errors or omissions.

We would also like to thank former editors David Hyland-Wood (version 1) and Daniel Burnett
(version 2), and former EEA Technical Director, the late and missed Clifton Barber, for their work
on previous versions of this specification.

Enterprise Ethereum is built on top of Ethereum, and we are grateful to the entire community who
develops Ethereum, for their work and their ongoing collaboration to helps us maintain as much
compatibility as possible with the Ethereum ecosystem.

A.4 Acknowledgments

A.5 Changes
©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 62 of 68

file:///Users/chaals/Documents/GitHub/client-spec/docs/req-xcli-055
https://entethalliance.org/resources/
https://entethalliance.org/contact/

This section outlines substantive changes made to the specification since version 3:

Update PERM-200 and PERM-240 to allow for caching information.

Update the status of eea_sendTransaction and eea_sendRawTransaction from
experimental to stable.

Add PERM-250 and PERM-260 so AccountPermissionsUpdated events trigger
appropriate cache invalidation.

Add PROT-070 requiring clients to interpret network configuration parameters as defined in
this specification.

Add addsPermissions parameter to the permissionsUpdated events in permissioning
contracts. Modified PERM-230 to use the new parameter.

Move Permissioning Sublayer Section under new Enterprise 3P's Layer Section.

Add privacyGroupId parameter to all sendTransaction JSON RPC calls. Add Privacy
Groups sub section to Privacy and Scaling Layer Section.

Removes Permissioning Smart Contract examples section. This has been copied to the
separate Implementation Guide document.

Update the definitions of connectionAllowed and transactionAllowed to note that they
can be found at the address given by the relevant parameters of the network configuration.

Change EXEC-060 to MAY, and clarify that it is about alternative crypto curves

Reword XCLI-040 as a requirement on the client to function when Gas price is zero.

Remove permissioning requirements NODE-040, NODE-050, NODE-060, PART-020,
PART-025, PART-030 and PART-040 as they are now requirements to be met by the
permissioning contract on an Enterprise Ethereum Blockchain.

Remove Privacy Levels Section and Privacy Level Certification Section.

Remove DAPP-010 as it was not a client requirement.

Change res field to result in node and account permissioning interface functions.

Various updates to the architecture stack,.

Move former requirements PERM-040 and PERM-050 to the implementation guide.

Update EXEC-020 to require registration of extended opcodes, and add [P] EXEC-025
suggesting registration of new opcode functionality and specification in the [EEA-extended-
opcode-registry] and creating an EIP to describe the new opcode.

Update definitions of eea_sendTransactionAsync and eea_sendTransaction. Value
must now be 0 if present. Also remove value from the examples. Update privateFrom and
privateFor fields in examples, including changing privateFor to be an array.

Remove the limit on the size of the DATA parameter in eea_sendTransactionAsync and
eea_sendTransaction.

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 63 of 68

https://entethalliance.github.io/client-spec/implementing.html
file:///Users/chaals/Documents/GitHub/client-spec/docs/req-exec-025

Change the length of the privateFrom parameter in eea_sendTransaction* from 20 to
32 bytes.

Add [P] XCLI-055: requiring precompiled contracts to be registered according to [EIP-1352].

Remove experimental eea_clientCapabilities RPC method.

Update privacy requirements to require they "encrypt" rather than "support encryption of"
private transaction data.

Note that similar sections in Version 2 and version 3 describe the changes made to each version.

[ABI]
Contract ABI Specification. Ethereum Foundation. URL:
https://solidity.readthedocs.io/en/develop/abi-spec.html

[Byzantine-Fault-Tolerant]
Byzantine Fault Tolerant. URL: https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

[debug-traceTransaction]
debug_traceTransaction. URL: https://github.com/ethereum/go-ethereum/wiki/Management-
APIs

[DEVp2p-Node-Discovery]
Node Discovery Protocol. URL: https://github.com/ethereum/devp2p/blob/master/rlpx.md

[DEVp2p-Wire-Protocol]
ÐΞVp2p Wire Protocol. URL: https://github.com/ethereum/devp2p/blob/master/caps/eth.md

[EEA-extended-opcode-registry]
EEA EVM opcode extensions registry. Enterprise Ethereum Alliance, Inc. URL:
http://entethalliance.github.io/client-spec/extended-opcodes-registry.html

[EIP-1013]
Hardfork Meta: Constantinople. Ethereum Foundation. URL:
https://eips.ethereum.org/EIPS/eip-1013

[EIP-1352]
Specify restricted address range for precompiles/system contracts. Ethereum Foundation.
URL: https://eips.ethereum.org/EIPS/eip-1352

[EIP-225]
Clique proof-of-authority consensus protocol. Ethereum Foundation. URL:
https://eips.ethereum.org/EIPS/eip-225

[EIP-648]

B. References

B.1 Normative references

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 64 of 68

file:///Users/chaals/Documents/GitHub/client-spec/docs/req-xcli-055
https://entethalliance.org/wp-content/uploads/2019/05/EEA_Enterprise_Ethereum_Client_Specification_V3.pdf
https://solidity.readthedocs.io/en/develop/abi-spec.html
https://solidity.readthedocs.io/en/develop/abi-spec.html
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://github.com/ethereum/go-ethereum/wiki/Management-APIs
https://github.com/ethereum/go-ethereum/wiki/Management-APIs
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
http://entethalliance.github.io/client-spec/extended-opcodes-registry.html
http://entethalliance.github.io/client-spec/extended-opcodes-registry.html
https://eips.ethereum.org/EIPS/eip-1013
https://eips.ethereum.org/EIPS/eip-1013
https://eips.ethereum.org/EIPS/eip-1352
https://eips.ethereum.org/EIPS/eip-1352
https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225

Easy Parallelizability. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/648

[EIP-650]
Istanbul Byzantine Fault Tolerance. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/650

[enode]
Ethereum enode URL format. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/enode-url-format

[Ethereum-Wire-Protocol]
Ethereum Wire Protocol. URL: https://github.com/ethereum/wiki/wiki/Ethereum-Wire-
Protocol

[Ethereum-Yellow-Paper]
Ethereum: A Secure Decentralized Generalized Transaction Ledger. Dr. Gavin Wood. URL:
https://ethereum.github.io/yellowpaper/paper.pdf

[EVM-Opcodes]
Ethereum Virtual Machine (EVM) Opcodes and Instruction Reference. URL:
https://github.com/trailofbits/evm-opcodes

[eWASM]
Ethereum-flavored WebAssembly. URL: https://github.com/ewasm/design

[GDPR]
European Union General Data Protection Regulation. European Union. URL: https://eur-
lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679

[JSON]
The application/json Media Type for JavaScript Object Notation (JSON). D. Crockford. IETF.
July 2006. Informational. URL: https://tools.ietf.org/html/rfc4627

[JSON-RPC]
JavaScript Object Notation - Remote Procedure Call. JSON-RPC Working Group. URL:
http://www.jsonrpc.org/specification

[JSON-RPC-API]
Ethereum JSON-RPC API. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/JSON-RPC

[JSON-RPC-API-vf4e6248]
Ethereum JSON-RPC API. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/JSON-
RPC/f4e624855ae05371b3fb78e02f5052679063b0b2

[JSON-RPC-PUB-SUB]
RPC PUB-SUB. Ethereum Foundation. URL: https://github.com/ethereum/go-
ethereum/wiki/RPC-PUB-SUB

[LLL]

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 65 of 68

https://github.com/ethereum/EIPs/issues/648
https://github.com/ethereum/EIPs/issues/648
https://github.com/ethereum/EIPs/issues/650
https://github.com/ethereum/EIPs/issues/650
https://github.com/ethereum/wiki/wiki/enode-url-format
https://github.com/ethereum/wiki/wiki/enode-url-format
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/trailofbits/evm-opcodes
https://github.com/trailofbits/evm-opcodes
https://github.com/ewasm/design
https://github.com/ewasm/design
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC/f4e624855ae05371b3fb78e02f5052679063b0b2
https://github.com/ethereum/wiki/wiki/JSON-RPC/f4e624855ae05371b3fb78e02f5052679063b0b2
https://github.com/ethereum/go-ethereum/wiki/RPC-PUB-SUB
https://github.com/ethereum/go-ethereum/wiki/RPC-PUB-SUB

LLL Introduction. Ben Edgington. 2017. URL: http://lll-
docs.readthedocs.io/en/latest/lll_introduction.html

[Nethereum]
Nethereum .NET Integration Library. Nethereum Open Source Community. URL:
https://nethereum.com

[Plasma]
Plasma: Scalable Autonomous Smart Contracts. Joseph Poon and Vitalik Buterin. August
2017. URL: https://plasma.io/plasma.pdf

[PSD2]
European Union Personal Service Directive. European Union. URL:
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC5116]
An Interface and Algorithms for Authenticated Encryption. D. McGrew. IETF. January 2008.
Proposed Standard. URL: https://tools.ietf.org/html/rfc5116

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://tools.ietf.org/html/rfc8174

[RLP]
Recursive Length Prefix. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/RLP

[sharding]
Sharding FAQs. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/Sharding-FAQs

[Solidity]
The Solidity Contract-Oriented Programming Language. Ethereum Foundation. URL:
https://github.com/ethereum/solidity

[state-channels]
Counterfactual: Generalized State Channels. URL: https://counterfactual.com/statechannels

[web3.js]
Ethereum JavaScript API. Ethereum Foundation. URL: https://github.com/ethereum/web3.js

[web3j]
web3j Lightweight Ethereum Java and Android Integration Library. Conor Svensson. URL:
https://web3j.io

[Whisper-protocol]
Whisper. Ethereum Foundation. URL: https://github.com/ethereum/wiki/wiki/Whisper

[ZK-STARKS]

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 66 of 68

http://lll-docs.readthedocs.io/en/latest/lll_introduction.html
http://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://nethereum.com/
https://nethereum.com/
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8174
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://counterfactual.com/statechannels
https://counterfactual.com/statechannels
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://web3j.io/
https://web3j.io/
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper

Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive. 2018-03-16. URL: https://eprint.iacr.org/2018/046.pdf

[ZKP]
Zero Knowledge Proof. Wikipedia. URL: https://en.wikipedia.org/wiki/Zero-knowledge_proof

[EEA-implementation-guide]
Enterprise Ethereum Alliance Implementation Guide V4.0. Enterprise Ethereum Alliance, Inc.
URL: https://entethalliance.org/wp-
content/uploads/2018/11/EEA_Enterprise_Ethereum_Implementation_Guide_V4.pdf

[EEA-OC]
EEA Off-Chain Trusted Compute Specification - Editors' draft. Enterprise Ethereum Alliance,
Inc. URL: https://entethalliance.github.io/trusted-computing/spec.html

[EIPs]
Ethereum Improvement Proposals. Ethereum Foundation. URL: https://eips.ethereum.org/

[ERC-20]
Ethereum Improvement Proposal 20 - Standard Interface for Tokens. Ethereum Foundation.
URL: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

[ERC-223]
Ethereum Improvement Proposal 223 - Token Standard. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/223

[ERC-621]
Ethereum Improvement Proposal 621 - Token Standard Extension for Increasing &
Decreasing Supply. Ethereum Foundation. URL: https://github.com/ethereum/EIPs/pull/621

[ERC-721]
Ethereum Improvement Proposal 721 - Non-fungible Token Standard. Ethereum Foundation.
URL: https://github.com/ethereum/eips/issues/721

[ERC-827]
Ethereum Improvement Proposal 827 - Extension to ERC-20. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/827

[geth-repo]
Go-Ethereum. URL: https://github.com/ethereum/go-ethereum/

[implementation-code-in-Golang]
implementation code in Golang. URL: https://github.com/ethereum/go-
ethereum/blob/master/core/vm/contracts.go#L50-L360

[Layer2-Scaling-Solutions]
Making Sense of Ethereum's Layer 2 Scaling Solutions: State Channels, Plasma, and Truebit.
Josh Stark. February 2018. URL: https://medium.com/l4-media/making-sense-of-ethereums-
layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4

B.2 Informative references

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 67 of 68

https://eprint.iacr.org/2018/046.pdf
https://eprint.iacr.org/2018/046.pdf
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Enterprise_Ethereum_Implementation_Guide_V4.pdf
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Enterprise_Ethereum_Implementation_Guide_V4.pdf
https://entethalliance.github.io/trusted-computing/spec.html
https://entethalliance.github.io/trusted-computing/spec.html
https://eips.ethereum.org/
https://eips.ethereum.org/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/pull/621
https://github.com/ethereum/EIPs/pull/621
https://github.com/ethereum/eips/issues/721
https://github.com/ethereum/eips/issues/721
https://github.com/ethereum/EIPs/issues/827
https://github.com/ethereum/EIPs/issues/827
https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/go-ethereum/blob/master/core/vm/contracts.go#L50-L360
https://github.com/ethereum/go-ethereum/blob/master/core/vm/contracts.go#L50-L360
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4

[PoET]
Proof of Elapsed Time 1.0 Specification. Intel Corporation. 2015-2017. URL:
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html#

[RAFT]
Raft-based Consensus for Ethereum/Quorum. J.P. Morgan. URL:
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md

[USECASES]
Use cases for Enterprise Ethereum Clients (EDITORS' DRAFT WORK IN PROGRESS). EEA
Inc. URL: https://entethalliance.github.io/client-spec/usecases.html

[WP-ABAC]
Attribute-based access control. Wikipedia. URL: https://en.wikipedia.org/wiki/Attribute-
based_access_control

[WP-RBAC]
Role-based access control. URL: https://en.wikipedia.org/wiki/Role-based_access_control

©2018-2019 Enterprise Ethereum Alliance Inc. All Rights Reserved Page 68 of 68

https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html#
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html#
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md
https://entethalliance.github.io/client-spec/usecases.html
https://entethalliance.github.io/client-spec/usecases.html
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control

	Blank Page
	Blank Page

