

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

1

Enterprise Ethereum Alliance

Off-Chain Trusted Compute

Specification V1.0

13 May 2019

Editors:

Sanjay Bakshi (Intel)

Yevgeniy (Eugene) Yarmosh (Intel)

Lei Zhang (iExec Blockchain Tech)

Contributors:

Bill Gleim (ConsenSys), Andreas Freund (ConsenSys), Thomas Bertani (Oraclize), Jean-

Charles Cabelguen (iExec), Ben Towne (SAE ITC), Dan von Kohorn (ConsenSys /

Independent), George Polzer (Everymans AI), Puneetha Karamsetty (Web3Labs), Mic

Bowman (Intel), Michael Steiner (Intel), Bruno Vavala (Intel), Tom Willis (Intel), Junji Katto

(Itau), Przemyslaw Jakub Siemion (Santander Digital), Chaals Nevile (EEA)

© 2019 Enterprise Ethereum Alliance. All rights reserved.

Abstract

This document specifies APIs that enable off-chain Trusted Computing for Enterprise Ethereum. In

this release, The Trusted Computing specification enables privacy in blockchain translations,

moving intensive processing from a main blockchain to improve scalability and latency, and

support of attested Oracles.

1. Legal Notice

The copyright in this document is owned by Enterprise Ethereum Alliance. Inc. (“EEA” or

“Enterprise Ethereum Alliance”).

No modifications, edits or changes to the information in this document are permitted. Subject to the

terms and conditions described herein, this document may be duplicated for internal use, provided

that all copies contain all proprietary notices and disclaimers included herein. Except as otherwise

provided herein, no license, express or implied, by estoppel or otherwise, to any intellectual

property rights are granted herein.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

2

Use of this document and any related intellectual property incorporated herein, is also governed by

the Bylaws, Intellectual Property Rights Policy and other governing documents and policies of

EEA and is subject to the disclaimers and limitations described below.

No use or display of any of the following names or marks "Enterprise Ethereum Alliance", the

acronym "EEA", the EEA logo, or any combination thereof, to claim compliance with or

conformance to this document (or similar statements) is permitted absent EEA membership and

express written permission from the EEA. The EEA is in process of developing a compliance

testing and certification program only for the EEA members in good standing, which it expects to

launch in second half of 2020.

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED "AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY

QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF

ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION

OR SAMPLE. EEA DOES NOT WARRANT THAT THIS DOCUMENT IS COMPLETE OR

WITHOUT ERROR AND DISCLAIMS ANY WARRANTIES TO THE CONTRARY.

Each user of this document hereby acknowledges that software or products implementing the

technology specified in this document ("EEA-Compliant Products") may be subject to various

regulatory controls under the laws and regulations of various governments worldwide. Such laws

and regulatory controls may govern, among other things, the combination, operation, use,

implementation and distribution of EEA-Compliant Products. Examples of such laws and

regulatory controls include, but are not limited to, airline regulatory controls, telecommunications

regulations, finance industry and security regulations, technology transfer controls, health and

safety and other types of regulations. Each user of this document is solely responsible for the

compliance by their EEA-Compliant Products with any such laws and regulations and for obtaining

any and all required authorizations, permits, or licenses for their EEA-Compliant Products related

to such regulations within the applicable jurisdictions. Each user of this document acknowledges

that nothing in this document or the relevant specification provides any information or assistance in

connection with securing such compliance, authorizations or licenses. NOTHING IN THIS

DOCUMENT CREATES ANY WARRANTIES WHATSOEVER REGARDING THE

APPLICABILITY OR NON-APPLICABILITY OF ANY SUCH LAWS OR REGULATIONS OR

THE SUITABILITY OR NON-SUITABILITY OF ANY SUCH PRODUCT OR SERVICE FOR

USE IN ANY JURISDICTION.

EEA has not investigated or made an independent determination regarding title or noninfringement

of any technologies that may be incorporated, described or referenced in this document. Use of this

document or implementation of any technologies described or referenced herein may therefore

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

3

infringe undisclosed third-party patent rights or other intellectual property rights. The user is solely

responsible for making all assessments relating to title and noninfringement of any technology,

standard, or specification referenced in this document and for obtaining appropriate authorization

to use such technologies, standards, and specifications, including through the payment of any

required license fees.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR

NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR

SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT.

IN NO EVENT SHALL EEA OR ANY OF ITS MEMBERS BE LIABLE TO THE USER OR TO

A THIRD PARTY FOR ANY CLAIM ARISING FROM OR RELATING TO THE USE OF THIS

DOCUMENT, INCLUDING, WITHOUT LIMITATION, A CLAIM THAT SUCH USE

INFRINGES A THIRD PARTY’S INTELLECTUAL PROPERTY RIGHTS OR THAT IT FAILS

TO COMPLY WITH APPLICABLE LAWS OR REGULATIONS. BY USE OF THIS

DOCUMENT, THE USER WAIVES ANY SUCH CLAIM AGAINST EEA AND ITS

MEMBERS RELATING TO THE USE OF THIS DOCUMENT.

EEA reserves the right to adopt any changes or alterations to this document as it deems necessary

or appropriate without any notice. User is solely responsible for determining whether this

document has been superseded by a later version or a different document.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

Status of This Document

This section describes the status of this document at the time of its publication. Newer documents

might supersede this document.

This document has been reviewed by the EEA Membership, Executive and Board, and is endorsed

by the EEA Board for publication as an experimental API. It is a stable document and may be used

as reference material or cited from another document.

This specification was developed by the EEA Technical Specification Working Group, Trusted

Computing Task Force for review, improvement, and publication as an EEA Standard.

Please send any comments to the EEA Technical Steering Committee at

https://entethalliance.org/contact/.

GitHub Issues are preferred for discussion of this specification.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

4

Table of Contents

1. Legal Notice

2. Introduction

2.1 Background

2.1.1 Invocation Models

2.1.1.1 Direct Model

2.1.1.2 Proxy Model

3. Conformance

4. Design Assumptions

5. RPC Encoding Conventions

5.1 Error and Status Formats

5.1.1 Parameters

5.2 JWT Signature Support

6. Worker APIs

6.1 Worker Registry List Smart Contract API

6.1.1 Adding a New Registry

6.1.2 Updating a Registry

6.1.3 Setting Registry Status

6.1.4 Initiating Registry Lookup

6.1.5 Getting Additional Registry Lookup Results

6.1.6 Retrieving Registry Information

6.2 Worker Registry Smart Contract API

6.2.1 Registering a New Worker

6.2.2 Updating a Worker

6.2.3 Setting Worker Status

6.2.4 Initiating Worker lookup

6.2.5 Getting Additional Worker Lookup Results

6.2.6 Retrieving Worker Information

6.3 Off-Chain Worker Registry JSON RPC API

6.3.1 Worker Register JSON Payload

6.3.2 Worker Update JSON Payload

6.3.3 Worker Set Status JSON Payload

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

5

6.3.4 Worker Lookup JSON Payload

6.3.5 Worker Lookup Next JSON Payload

6.3.6 Worker Lookup Response JSON Payload

6.3.7 Worker Retrieve JSON Payload

6.3.8 Worker Retrieve Response JSON Payload

7. Work Orders

7.1 Direct Model Invocation

7.1.1 Work Order Request Payload

7.1.2 Work Order Result Payload

7.1.3 Work Order Status Payload

7.1.4 Work Order Pull Request Payload

7.1.5 Work Order Asynchronous Result

7.1.6 Work Order Completion Event

7.1.7 Work Order Data Formats

7.1.8 Work Order Signing

7.1.8.1 Request Hash Calculation and Encryption

7.1.8.2 Response Hash Calculation

7.1.8.3 Signing for JSON-RPC Format

7.1.8.4 Signing for JSON-RPC-JWT Format

7.1.9 Get Encryption Key Request Payload

7.1.10 Get Encryption Key Response Payload

7.1.11 Set Encryption Key Request Payload

7.2 Proxy Model Invocation

7.2.1 Submitting a New Work Order

7.2.2 New Work Order Event

7.2.3 Completing a Work Order

7.2.4 Work Order Done Event

7.2.5 Retrieving Work Order Response Information

7.2.6 Setting Encryption Key

7.2.7 Encryption Key Set Event

7.2.8 Retrieving Encryption Key

7.2.9 Starting Encryption Key Generation

7.2.10 Encryption Key Start Event

8. Work Order Receipts

8.1 Proxy Model Receipt Handling

8.1.1 Creating a Work Order Receipt

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

6

8.1.2 Updating a Work Order Receipt

8.1.3 Retrieving a Work Order Receipt

8.1.4 Retrieving a Work Order Receipt Update

8.1.5 Work Order Receipt Lookup

8.1.6 Work Order Receipt Lookup Next

8.1.7 Work Order Receipt Update Event

8.1.8 Work Order Receipt Create Event

8.2 Direct Model Receipt Handling

8.2.1 Status and Error Payload Structure

8.2.2 Receipt Create Request Payload

8.2.3 Receipt Update Request Payload

8.2.4 Receipt Retrieve Request Payload

8.2.5 Receipt Retrieve Response Payload

8.2.6 Receipt Update Retrieve Request Payload

8.2.7 Receipt Update Retrieve Response Payload

8.2.8 Receipt Lookup Request Payload

8.2.9 Receipt Lookup Response Payload

8.2.10 Receipt Lookup Next Request Payload

9. Appendix A: Worker Specific Detailed Data

9.1 Common Data for All Worker Types

9.2 TEE Worker Data

9.2.1 Intel SGX Worker Type Data

9.2.2 TEE-SGX Load Balancing and Enclave pools

9.3 MPC Worker Data

9.4 ZK Worker Data

10. Implementation Notes 10.1

Note 1: Receipts

10.2 Note 2: Worker Service

10.3 Note 3: Proof Data

10.4 Note 4: Security Consideration

A. Additional Information

A.1 Terminology

B. References

B.1 Normative references

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

7

B.2 Informative references

2. Introduction

This section is non-normative.

This specification has four objectives:

 Support private transactions on a blockchain between mutually-untrusting parties without

disclosing transaction details to other parties who also have access to the blockchain.

 Support disclosure of selected information to chosen parties on a blockchain, while

maintaining the secrecy of other information from those same chosen parties ("selective

Privacy").

 Move intensive processing from a main blockchain to an off-chain Trusted Compute capability

thereby improving throughput and scalability.

 Support Attested Oracles.

These objectives are achieved by executing some parts of a blockchain transaction off the main

chain in off-chain trusted computing. There are currently three types of Trusted Compute that are

supported by this specification:

Trusted Execution Environments (Hardware based)

Zero-Knowledge Proofs (Software based)

Trusted Multi-Party-Compute (MPC) (Software/Hardware based)

The APIs are grouped in registration, invocation and receipt handing sections. Attested Oracles are

considered a special application of Trusted Compute used to create increased trust in an Oracle,

and can be implemented using the defined APIs.

2.1 Background

Early blockchains delivered computational trust via massive replication but had limited throughput,

and imperfect privacy and security. Adding trusted off-chain execution to a blockchain improves

blockchain performance in these areas. In this specification, a main blockchain maintains a single

authoritative instance of the objects, enforces execution policies, and ensures that transactions and

results can be audited, while associated off-chain trusted computing allows greater throughput,

increases Work Order integrity, and protects data confidentiality.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

8

For terminology used in this specification please refer to the terminology section.

Figure 1 depicts an example Enterprise Ethereum blockchain with N member enterprises. Each

enterprise has Requesters, an Ethereum blockchain client and one or more Workers (supported by a

Worker Service). Requesters submit Work Orders, and Workers execute those Work Orders. Work

Order receipts can be recorded on the blockchain by Ethereum clients running Smart Contracts.

While each of the enterprises in figure 1 contains all three major components, this is not necessary.

For example, Requesters from Enterprise 1 may send Work Orders to a Worker at Enterprise 2, and

the results may be recorded by an Ethereum Client at Enterprise 1. Accessing resources across

multiple enterprises increases network resilience, allows more efficient use of resources, and

provides access to greater total capacity than most individual enterprises can afford.

Figure 1 Figure 1 Enterprise Ethereum Blockchain with Off-Chain Workers

In order to get these benefits of cooperation, participating Enterprises must register their

Requesters, Ethereum Clients, and Workers with the main blockchain. Each registered Requester,

Ethereum Client, or Worker (or its Worker Service) will have its own unique Ethereum address (or

a DID that can be resolved to an Ethereum address) from which to receive or send transactions.

2.1.1 Invocation Models

A Requester can submit a Work Order to a Worker via one of the following models:

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

9

2.1.1.1 Direct Model

In this invocation, model Workers are invoked via a JSON RPC network API. An organization

registers its Workers with on-chain Smart Contract(s) where a ÐApp can discover them.

Subsequent interactions between a ÐApp and the Worker are done off the chain. Optionally,

transaction receipts can be stored on the chain.

Figure 2 Figure 2 Direct Invocation

2.1.1.2 Proxy Model

In this invocation, model Workers are invoked via a proxy Smart Contract (see section Proxy

Model Invocation). The Proxy Model is typically used to support uses in which an application

Smart Contract or a ÐApp prefers not to or cannot invoke a Worker directly. An organization

registers its Workers with an on-chain Smart Contract where a ÐApp or other smart contract can

discover them. Optionally, transaction receipts can be stored on the chain.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

10

Figure 3 Figure 3 Proxy Invocation

This version of the specification addresses only stateless (from the Worker viewpoint) execution.

Maintaining state between Work Order invocations has to be managed by the caller.

A future version of the specification may include an additional model, in which off-chain logic acts

as both the Requester and the Worker and is the creator and controller of the Smart Contract. The

Smart Contract is branded by its creator and maintains the state of the contract. Logic within the

Smart Contract is minimally used for validating and enforcing security policies for state changes

and local transactions. This version would rely on an external registry shared by contract

participants.

3. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and

notes in this specification are non-normative. Everything else in this specification is normative.

The key word MUST is to be interpreted as described in [RFC2119].

This Specification extends the capabilities and interfaces of the Enterprise Ethereum Alliance

Client Specification, version 2.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

11

The Application Programming Interfaces (APIs), JSON-RPC formats and parameters, "Smart

Contract" functions and events described in this Specification are experimental. Experimental

means that a requirement or API may change as implementation feedback is incorporated.

Implementors are encouraged to implement these experimental requirements, with the knowledge

that requirements in future versions of the Specification are not guaranteed to be compatible with

the current version. Please send your comments and feedback on the experimental portions of this

Specification to the EEA Technical Steering Committee at https://entethalliance.org/contact/.

4. Design Assumptions

This section is non-normative.

The APIs in this specification assume the existence of :

 A Worker Registry smart contract or an Off-Chain Worker Registry JSON RPC API for

registering various Workers as a part of a deployment.

 An optional Work Order Receipts smart contract and/or support for Work Order Receipts

JSON RPC API for Requesters to create Work Order receipts and for Workers to update

Work Order receipts upon completion of execution.

RPC APIs in the current version of the specification use [JSON-RPC-API]. Future versions of the

specification may support other mechanisms such as protobuf and gRPC.

For the Proxy Model, the APIs additionally assume the existence of a Work Order Invocation

Proxy smart contract (deployed by a Worker Service) for sending work orders as defined in section

Proxy Model Invocation. It is used by a ÐApp or an enterprise application smart contract to invoke

Work Order execution in a Worker.

For the Direct Model, Workers support the Work Order Execution JSON RPC API to receive Work

Orders from ÐApps.

The APIs assume that a Worker:

• Has an RSA [RFC8017] and potentially an ECDSA/SECP256K1 [secp256k1] public-private

key pair, that can be used to encrypt data (e.g. a one-time symmetric session key) and to

create digital signatures.

• Can publish its public keys.

• Never reveals its private keys.

• Provides proof data that defines and attests what mechanisms and capabilities are used to

ensure Worker execution integrity, Requester’s privacy, and data confidentiality.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

12

This specification assumes, but doesn’t define, a permissioning mechanism that would authorize

access to defined APIs. It assumes that implementation-specific policies will be implemented and

enforced by the Worker Registry smart contract, optional Requester Registry smart contract,

optional Work Order Invocation Proxy smart, and/or optional Work Order Receipts smart contract.

The Delegate Model assumes a shared registry of workers and assumes that the associated

repository for the registered packaging, binary (.jar, .dll, etc.), Docker image, or other is available

to parties participating in the contracts using them.

5. RPC Encoding Conventions

All RPC APIs in this specification follow JSON RPC conventions:

https://www.jsonrpc.org/specification.

JSON RPC payloads include the following common features applicable to all APIs:

jsonrpc MUST be 2.0 as defined in [JSON-RPC-API] id is an id used to link

request and response as described in [JSON-RPC-API]

5.1 Error and Status Formats

All errors and status are returned in the following generic JSON RPC error format.

{

 "jsonrpc": "2.0", // as per JSON RPC spec

 "id": <integer>, // the same as in input

 "error": { // as per JSON RPC spec

 "code": <integer>,

 "message": <string>,

 "data": <implementation specific data>

 }

}

5.1.1 Parameters jsonrpc must be 2.0 per JSON RPC specification id is the same id that was

sent in a corresponding request error is a JSON object that defines an error or error status,

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

13

with the following parameters: code is an integer number defining an error or state.

Supported values:

Values from -32768 to -32000 are reserved for pre-defined errors in JSON RPC spec

0 – success

1 – unknown error

2 – invalid parameter format or value

3 – access denied

4 – invalid signature

5 - no more look up results

6 - unsupported mode (e.g. synchronous, asynchronous, pull, or notification) message

is a string describing the errors and corresponding to code value. data contains additional details

about the error. Its format is error and implementation specific.

5.2 JWT Signature Support

The APIs also support JSON Web Token [RFC7519] as an option for the signatures.

Header:

{

 "alg": "RSA" or "secp256k1"

 "type": "JWT"

}

Payload:

{

 "apiSpecific": <string>

 //...

}

Signature:

RSA or SECP256K1(

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

14

 base64UrlEncode(header) + "." +

base64UrlEncode(payload), secret)

Where secret is a random nonce.

The parameter descriptions for APIs in this specification only specify API-dependent Payload

objects.

6. Worker APIs

This chapter defines APIs for registering Workers, Worker Registries and Worker Registry Lists:

 Smart contract API to list worker registries, defined in Worker Registry List Smart Contract

API.

 Smart contract API for maintaining worker registry on-chain, defined in Worker Registry

Smart Contract API.

 JSON RPC API for maintaining worker registry off-chain, defined in Off-Chain Worker

Registry JSON RPC API.

6.1 Worker Registry List Smart Contract API

APIs in this section are implemented as an Ethereum smart contract referred to as Worker Registry

List.

An implementation-specific model will be used to enforce authorization policies for access to these

APIs.

As mentioned in Registering a New Worker section, currently three workers types are defined

based on trusted compute type attributes. In future, more attributes such as location, support for

some special hardware or software feature, etc. will be defined. The Worker Registry Smart

Contract allows attribute-based grouping of workers or grouping based on an organization e.g.

those belonging to a single bank. The Worker Registry List Smart Contract API allows discovery

of various worker registries.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

15

6.1.1 Adding a New Registry

This function adds a new registry to the registry list.

Inputs

orgID identifies an organization that hosts the registry, e.g. a bank in the consortium, or an

anonymous entity.

uri defines a URI for this registry that supports Off-Chain Worker Registry JSON RPC API.

scAddr defines an Ethereum address for the Worker Registry Smart Contract API smart contract.

appTypesIds is an optional parameter that defines application types supported by the worker.

function registryAdd(byte32 orgID, string uri, byte32 scAddr, bytes32[] a

6.1.2 Updating a Registry

This function updates a registry to the registry list.

Inputs and outputs are the same as for the function registryAdd() above.

function registryUpdate(byte32 orgID, string uri, byte32 scAddr, bytes32[

6.1.3 Setting Registry Status

This function sets a Registry's status.

Inputs

orgID identifies organization that hosts the registry, the same that is used in function registryAdd().

status defines registry status to set. The currently defined values are:

1. indicates that the registry is active

2. indicates that the registry is "off-line" (temporarily)

3. indicates that the registry is decommissioned

function registrySetStatus(byte32 orgID, uint8 status) public

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

16

6.1.4 Initiating Registry Lookup

This function retrieves a list of registry ids that match the input parameters.

The Worker must match all input parameters (AND mode) to be included in the list.

If the list is too big to fit into a single response (the maximum number of entries in a single

response is implementation-specific), the smart contract should return the first batch of the results

and provide a lookupTag that can be used by the caller to retrieve the next batch by calling

registryLookUpNext.

All input parameters are optional and can be provided in any combination to select a

registry. Inputs appTypeId is an application type that must be supported by the workers.

Outputs

totalCount is the total number of entries matching a specified lookup criteria. If this number is

larger than the size of the ids array, the caller should use the lookupTag to call workerLookUpNext to

retrieve the rest of the ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching registry

ids that can be retrieved by calling the function registryLookUpNext with this tag as an input

parameter.

ids is an array of the registry organization ids that match the input parameters

function registryLookUp(bytes32 appTypeId) public view returns

 (int totalCount, string LookupTag,

bytes32[] ids)

6.1.5 Getting Additional Registry Lookup Results

This function is called to retrieve additional results of the Registry lookup initiated by the

registryLookUp call. Inputs appTypeId is an application type that has to be supported by the

workers retrieved.

lookupTag is returned by a previous call to either this function or to registryLookUp. Outputs

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

17

totalCount is a total number of entries matching the lookup criteria. If this number is larger than the

number of ids returned so far, the caller should use lookupTag to call registryLookUpNext to retrieve

the rest of the ids.

newLookupTag is an optional parameter. If it is returned, it means that there are more matching

registry ids that can be retrieved by calling this function again with this tag as an input parameter.

ids is an array of the registry ids that match the input parameters

function registryLookUpNext(bytes32 applTypeId, string lookUpTag) public returns(int

totalCount, string newLookupTag, bytes32[] ids)

6.1.6 Retrieving Registry Information

This function retrieves information from the registry.

Inputs id is the id of the registry whose details are

requested.

Outputs

The same as the input parameters to the corresponding call to registryAdd() plus status as defined in

registrySetStatus.

function registryRetrieve(byte32 workerId) public view returns (string

uri, byte32 scAddr, bytes32[] appTypeIds, uint8 status)

6.2 Worker Registry Smart Contract API

APIs in this section are implemented as an Ethereum smart contract referred to as Worker Registry.

6.2.1 Registering a New Worker

This function registers a Worker and is invoked from the Ethereum address of the Trusted

Resource Service using [JSON-RPC] with the digital signature associated with the sending

Ethereum address.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

18

An Implementation-specific model enforces authorization for this call. Inputs workerID is a

worker id, e.g. an Ethereum address or a value derived from the worker's DID.

workerType defines the type of Worker. Currently defined types are:

1. indicates "TEE-SGX": an Intel SGX Trusted Execution Environment

2. indicates "MPC": Multi-Party Compute

3. indicates "ZK": Zero-Knowledge

APIs specific to each type of Worker are given in Appendix A.

organizationID is an optional parameter representing the organization that hosts the Worker, e.g. a

bank in the consortium or anonymous entity.

applicationTypeId is an optional parameter that defines application types supported by the Worker.

details is detailed information about the worker in JSON format as defined in Appendix A. This

parameter includes either the worker data, or the registry URI where the data can be retrieved via

JSON RPC API, as defined in section Off-Chain Worker Registry JSON RPC API.

function workerRegister(byte32 workerID, uint8

workerType, bytes32 organizationID, bytes32[]

applicationTypeId, string details) public

6.2.2 Updating a Worker

This function updates a Worker and is invoked from the Ethereum address of the Trusted Resource

Service using [JSON-RPC] with the digital signature associated with the sending Ethereum

address.

Inputs: refer to section "Registing a Worker"

function workerUpdate(byte32 workerID, string details) public

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

19

6.2.3 Setting Worker Status

This function sets a Worker's status. An implementation-specific model enforces

authorization policies for this call. Inputs workerID is a worker id status defines Worker status.

The currently defined values are:

1. indicates that the worker is active

2. indicates that the worker is "off-line" (temporarily)

3. indicates that the worker is decommissioned

4. indicates that the worker is compromised

function workerSetStatus(byte32 workerID, uint8 status) public

6.2.4 Initiating Worker lookup

This function retrieves a list of Worker ids that match the input parameters.

The Worker must match all input parameters (AND mode) to be included in the list.

If the list is too large to fit into a single response (the maximum number of entries in a single

response is implementation specific), the smart contract should return the first batch of the results

and provide a lookupTag that can be used by the caller to retrieve the next batch by calling

workerLookUpNext.

All input parameters are optional and can be provided in any combination to select

Workers. Inputs workerType is a characteristic of Workers for which you may wish to search

organizationId is an id of an organization that can be used to search for one or more Workers that

belong to this organization applicationTypeId is an application type that is supported by the

Worker Outputs

totalCount is a total number of entries matching a specified lookup criteria. If this number is bigger

than size of ids array, the caller should use lookupTag to call workerLookUpNext to retrieve the

rest of the ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching

Worker ids that can be retrieved by calling function workerLookUpNext with this tag as an

input parameter. ids is an array of the Worker ids that match the input parameters.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

20

function workerLookUp(uint8

workerType, bytes32 organizationId,

 bytes32 applicationTypeId) public view returns(int

totalCount, string LookupTag, bytes32[] ids)

6.2.5 Getting Additional Worker Lookup Results

This function is called to retrieve additional results of the Worker lookup initiated by

workerLookUp call. Inputs workerType is a characteristic of Workers for which you

may wish to search. organizationId is an organization to which a Worker belongs.

applicationTypeId is an application type that has to be supported by the Worker.

lookupTag is returned by a previous call to either this function or to workerLookUp.

Outputs

totalCount is a total number of entries matching this lookup criteria. If this number is larger than the

number of ids returned so far, the caller should use lookupTag to call workerLookUpNext to retrieve

the rest of the ids.

newLookupTag is an optional parameter. If it is returned, it means that there are more matching

Worker ids than can be retrieved by calling this function again with this tag as an input parameter.

ids is an array of the Worker ids that match the input parameters.

function workerLookUpNext(uint8

workerType, bytes32 organizationId,

bytes32 applicationTypeId, string lookUpTag)

public view returns(int totalCount,

string newLookupTag, bytes32[] ids)

6.2.6 Retrieving Worker Information

This function retrieves information for the Worker. It can be called from any authorized

Ethereum address. Inputs workerId is the id of a Worker to be retrieved.

Outputs

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

21

The same as the input parameters to the corresponding call to workerRegister + status as defined in

workerSetStatus.

function workerRetrieve(byte32 workerId) public view returns (

uint8 workerType, string workerTypeDataUri, bytes32

organizationId, bytes32[] applicationTypeId, string details,

uint8 status)

6.3 Off-Chain Worker Registry JSON RPC API

These are the JSON RPC version of the "Worker Registry Smart Contract API". All messages

follow a request-response pattern and are completed synchronously during the same session.

Errors and status are returned using a generic JSON RPC error.

6.3.1 Worker Register JSON Payload

This message registers a Worker. It does not have a specific response payload; instead, a generic

error response payload is sent back as a response.

{

 "jsonrpc": "2.0",

 "method": "WorkerRegister",

 "id": <integer>,

 "params": {

 "workerId":<hex string or DID>,

 "workerType":<uint>,

 "organizationId":<hex string>,

 "applicationTypeId": [<one or more hex strings>],

 "details":{

 <worker type specific data>

 }

 } } method must be

WorkerRegister,

params is a collection of the request parameters. Refer to section Registering a New Worker for a

description of the parameters.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

22

6.3.2 orker Update JSON Payload

This message updates a Worker. It does not have a specific response payload; instead, a generic

error response payload is sent back as a response.

{

 "jsonrpc": "2.0",

 "method": "WorkerUpdate",

 "id": <integer>,

 "params": {

 "workerId":<hex string or DID>, "details":{

 <worker type specific data>

 }

 } } method must be

WorkerUpdate,

params is a collection of the request parameters. Refer to section Updating a New Worker for a

description of the parameters.

6.3.3 Worker Set Status JSON Payload

This message sets a Worker’s status.

It does not have a specific response payload; instead, a generic error response payload is sent

back as a response.

{

 "jsonrpc": "2.0",

 "method": "WorkerSetStatus",

 "id": <integer>,

 "params": {

 "workerId": <hex string or DID>,

 "status": <number>

 } } method must be

WorkerSetStatus.

workerId is an id of the worker for which to set status.

status can be one of active, offline, decommissioned, or compromised as defined in API "Setting

Worker Status" in section "Worker Registry Smart Contract API".

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

23

6.3.4 orker Lookup JSON Payload

This message initiates a Worker lookup in the registry.

Its response is defined in section Worker Lookup JSON Response Payload.

{

 "jsonrpc": "2.0",

 "method": "WorkerLookUp",

 "id": <integer>,

 "params": {

 "workerType": <uint>,

 "organizationId": <hex string>,

 "applicationTypeId": [<one or more hex strings>]

 } } method must be

WorkerLookUp,

params is a collection of the request parameters. Refer to section Initiating Worker Look Up for a

description of the parameters.

6.3.5 Worker Lookup Next JSON Payload

This message continues retrieving results initiated by a previous WorkerLookUp message. Its

response is defined in section Worker Lookup Response JSON Payload>.

{

 "jsonrpc": "2.0",

 "method": "WorkerLookUpNext",

 "id": <integer>,

 "params": {

 "workerType": <uint>,

 "organizationId": <hex string>,

 "applicationTypeId": [<one or more hex strings>]

 "lookUpTag": <string>

 } } method must be

WorkerLookUpNext,

params is a collection of the request parameters. Refer to section Getting Additional Worker

Lookup Results for a description of the parameters.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

24

6.3.6 Worker Lookup Response JSON Payload

This payload is sent back to a Requester in response to the request defined in sections Worker

Lookup JSON Payload and Worker Lookup Next JSON Payload.

{

 "jsonrpc": "2.0",

 "id": <integer>,

 "result": {

 "totalCount":<integer, "lookupTag":<string,

 ids:[<one or more hex strings>]

 }

}

'result' is a collection of the response specific parameters. Refer to the output parameters in

section Initiating Worker lookup for a description of elements in this object.

6.3.7 Worker Retrieve JSON Payload

This message retrieves a Worker by its ID. Its response is defined in section Worker Retrieve

Response JSON Payload.

{

 "jsonrpc": "2.0",

 "method": "WorkerRetrieve"

 "id": <integer>,

 "params": {

 "workerId": <hex string or DID>

 } } method must be

WorkerRetrieve,

params is a collection of the request parameters. Refer to section Retrieving Worker Information

for a description of the parameters.

6.3.8 Worker Retrieve Response JSON Payload

This payload is sent back to a Requester in response to the request defined in section Worker

Retrieve JSON Payload.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

25

{

 "jsonrpc": "2.0",

 "id": <integer>,

 "result": {

 "workerType":<uint>,

 "organizationId":<hex string>,

 "applicationTypeId": [<one or more hex strings>],

 "details":{

 <worker type specific data>

 },

 "status": <number>

 } }

result is a collection of the response-specific parameters. Refer to the output parameters in section

Retrieving Worker Information for a description of the elements in this object.

workerTypeDataURI defines a URI where detailed Worker type specification information can be

retrieved.

7. Work Orders

Direct Model: JSON RPC Work Order invocation API over network

Proxy Model: Work order invocation using Ethereum (proxy) smart contract

7.1 Direct Model Invocation

This section defines a mechanism for executing Work Orders over a network JSON RPC API

outside of the blockchain.

This API can be used in several modes:

 Synchronous request-response mode. The exchange of Work Order request and completion

result happen in the same HTTP session. Synchronous mode is for Work Orders that don’t

require a long time to execute.

 Result pulling mode. In this mode the ÐApp disconnects after submitting a Work Order

request, then periodically polls the JSON endpoint for the Work Order result

 Asynchronous mode. In this mode, a ÐApp provides a URI for receiving the Work Order result

as a part of the Work Order request. The ÐApp disconnects after submitting the Work Order.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

26

On completion of the Work Order, the Worker submits the Work Order result to the URI

provided.

 Notification mode. In this mode, A ÐApp provides a URI to receive a notification when the

Work Order is completed. The ÐApp disconnects after submitting the Work Order. When the

Work Order is completed, the Worker sends an event to the URI provided in the Work Order

request. On receiving the event, the client retrieves the Work Order result from the JSON

endpoint.

7.1.1 Work Order Request Payload

First, Requester sends a Work Order Request payload in the JSON-RPC based format defined

below.

{

 "jsonrpc": "2.0",

 "method": "WorkOrderSubmit",

 "id": <integer>,

 "params": {

 "responseTimeoutMSecs": <integer>,

 "payloadFormat": <string>

 "resultUri": <string>,

 "notifyUri": <string>,

 "workOrderId": <hex string>,

 "workerId": <hex string or DID>,

 "workloadId": <hex string>,

 "requesterId": <hex string>,

 "workerEncryptionKey": <hex string>, "dataEncryptionAlgorithm": <string>,

"encryptedSessionKey": <hex string>,

 "sessionKeyIv": <hex string>,

 "requesterNonce": <hex string>,

 "encryptedRequestHash": <hex string>,

 "requesterSignature": <BASE64 string>,

 "inData": [

 <object>

],

 "outData": [<object>

]

 }

}

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

27

Parameters method is set to

WorkOrderSubmit. params is a

collection of parameters as per JSON

RPC specification. The parameters

are defined below.

responseTimeoutMsecs is a maximum timeout in milliseconds that the caller will wait for the

response. Setting this timeout to zero means that the work order is submitted in the asynchronous

(if resultUri is present), notify (if notifyUri is present), or pull mode (if neither resultUri nor notifyUri

is present). In this case, the TCS should schedule the request for execution and immediately return

an error response with error code set to scheduled. If the timeout is not zero, the work order is in

synchronous mode. The TCS should wait for the work order completion before returning the

response to the participant. If the request cannot be completed within the allocated interval, the

work order should be cancelled and a corresponding error should be returned to the participant.

payloadFormat defines how signatures and data items are formatted in this work order request and

corresponding response. Its values are defined in section Appendix A.

resultUri is an optional parameter. If it is specified, the WorkerService should submit the Work

Order result to this URI. See section Work Order Asynchronous Result.

notifyUri is an optional parameter. If it is specified, the WorkerService should send an event to this

URI upon the Work Order completion. See section Work Order Completion Event.

workOrderId is an id assigned to the Work Order by the Requester and can be registered using

the Work Order Receipts API. workerId is a worker id to process the work order, e.g. an

Ethereum address or its DID.

workloadId is the id of the workload to be executed by the worker. It is optional if the worker

includes a single workload. requesterId is either the Requester’s Ethereum address or its DID.

workerEncryptionKey is an optional parameter containing the worker encryption key used for this

Work Order. It is useful if a Worker frequently updates its encryption key in the registry and

allows some time overlap in utilizing multiple keys. We assume here that the 'details' submitted

during the registration of a worker contain one or more public keys associated with the worker.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

28

dataEncryptionAlgorithm is an optional parameter that defines an algorithm for encrypting the data in

this work order. The default is the first value in the corresponding parameter for the worker

(defined by workerId). See section Common Data for All Worker Types.

encryptedSessionKey is a one-time encryption key generated by the participant submitting the work

order. It is sent encrypted with the worker's public encryption key. It is used to encrypt

encryptedRequestHash and data item specific data encryption keys. For the latter see Work Order

Data Formats.

sessionKeyIv is an initialization vector if required by the data encryption algorithm

(encryptedSessionKey). The default is all zeros.

requesterNonce is a random string generated by the participant. It is used to calculate a hash of this

work order request.

encryptedRequestHash is a hash of the work order request encrypted with the key provided in

encryptedSessionKey. See section Work Order Signing for the details. requesterSignature is an

optional parameter. See section Work Order Signing for the details.

inData contains either a JWT of the specified data or an array of one or more Work Order inputs,

e.g. state, message containing input parameters. See Work Order Data Formats.

outData contains information about what and how the work order execution results should be

delivered. See Work Order Data Formats.

After a Work Order request is received, the Worker Service can respond in one of three ways:

Complete a (short running) Work Order and return the result

Return an error if the Work Order was rejected or its execution failed

Schedule a Work Order to be executed later and return a corresponding status

7.1.2 Work Order Result Payload

If a submitted Work Order is completed, its Work Order Result is returned in the following format.

{

 "jsonrpc": "2.0",

 "id": <integer>,

 "result": {

 "workOrderId": <hex string>,

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

29

 "workloadId": <hex string>,

 "workerId": <hex string>,

 "requesterId": <hex string>,

 "workerNonce": <string>, "workerSignature": <BASE64 string>,

 "outData": [<object>

]

 }

}

Parameters

result is a collection of parameters as per JSON RPC specification. The parameters are defined

below. workOrderId is a Work Order id sent in the corresponding Work Order request.

workloadId is optional; if present, it must match a corresponding value from the work order request.

workerId is optional; if present, it must match a corresponding value from the work order request.

requesterId is optional; if present, it must match a corresponding value from the work order request.

workerNonce is a random string generated by the worker. It is used to calculate a hash of this work

order response.

workerSignature is a signature of the work order response. See section Work Order Signing for the

details. outData contains the work order execution results. See Work Order Data Formats.

7.1.3 Work Order Status Payload

If the work request fails, is rejected, is scheduled for later execution, or its execution requires a

long time; the Work Order Error Response payload is sent in the following format defined in

section RPC Encoding Conventions.

{

 "jsonrpc": "2.0",

 "id": <integer>,

 "error": {

 "code": "integer",

 "message": <string>,

 "data": {

 "workOrderId": <hex string>

 }

 }

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

30

}

Parameters code is an integer number defining an error or Work Order state.

Supported values:

 Values from -32768 to -32000 are reserved for pre-defined errors in JSON RPC spec

 5 means that the Work Order status is "pending" – scheduled to be executed, but not started yet

 6 means that the Work Order status is "processing" – its execution has started, but it has not

been completed yet

Values from 7 to 999 are reserved

All other values can be used by the Worker Service (a.k.a. implementation

specific) data contains additional details about the error that includes: workOrderId

which is a Work Order id as a hexadecimal string.

7.1.4 Work Order Pull Request Payload

If a Requester receives a response stating that its Work Order state is "scheduled" or "processing",

it should pull the Worker Service later to get the result. The Requester has two pulling options:

 Pull the Worker Service periodically until the Work Order is completed successfully or in error

 Wait for the Work Order Receipt complete event and retrieve a final result. Refer to Work

Order Receipts for more details.

In either case, the Work Order Pull Request must follow the format below:

{

 "jsonrpc": "2.0",

 "method": "WorkOrderGetResult",

 "id": <integer>,

 "params": {

 "workOrderId": <hex string>

 }

}

Parameters method is set to

WorkOrderGetResult.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

31

params is a collection of parameters as per JSON RPC specification. The parameters are defined

below. workOrderId is a Work Order id that was sent in the corresponding WorkOrderSubmit

request.

7.1.5 Work Order Asynchronous Result

If the client provides resultUri in the Work Order request payload, the Worker will send the Work

Order execution result to the URI provided in the same format as defined in "Work Order Result

Payload".

The client responds with a payload as defined in section Work Order Status Payload.

7.1.6 Work Order Completion Event

If the client provides notifyUri in the Work Order request payload, the Worker sends an event to the

Requester on completion of the Work Order, regardless of whether the Work Order was completed

successfully or not.

The event payload format:

{

 "jsonrpc": "2.0",

 "id": <integer>,

 "result": {

 "workOrderId": <hex string>

 }

}

Parameters result is a collection of JSON RPC parameters, as

follows:

workOrderId is the ID of the Work Order sent in the Work Order request.

On receiving this event, the client will pull the Work Order result as defined in section "Work

Order Pull Request Payload" above.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

32

7.1.7 Work Order Data Formats

This section defines formats for inData and outData elements within Work Order requests and

responses. The format depends on the value of payloadFormat in the work order request. inData and

outData are sent as arrays of objects with the following JSON elements:

{

 "index": <number>,

 "dataHash": <hex string>,

 "data": <BASE64 string>,

 "encryptedDataEncryptionKey": <hex string>,

 "iv": <hex string>

}

If payloadFormat is set to a custom value, it is an application-specific format.

Below are descriptions of the JSON elements:

index is an index that determines the order of the data items for hash generation. It can also be used

by the worker to identify different inputs and outputs.

dataHash is an optional hash value of the data. It is only applicable to inData in the work order

request and outData in the response.

data contains either data inline within the JSON document or a reference (e.g. URI) to the data. It is

up to the worker to determine how to interpret the data content. This parameter is applicable to

inData in the work order request

outData in the request if it contains a reference for the output outData in

the response

encryptedDataEncryptionKey defines whether data is encrypted and what key to use. It is only

included in the work order request as one of the options below

 If this key is not provided or set to "null" or to "", the data is encrypted using

encryptedSessionKey from the Work Order request

If the key value is set to "-", the data item is not encrypted, a.k.a. sent as clear text

Otherwise, the data item is sent encrypted with a one-time encryption key generated by a 3rd

party that owns this data item (it may be different from the Work Order requester).

encryptedDataEncryptionKey contains this encryption key in double encrypted format

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

33

 First, it is encrypted with the worker's public encryption key (e.g. by a 3rd party that owns

the data so the requester cannot see the data)

 Then the result of the previous encryption above is encrypted with the key from

encryptedSessionKey by the requester, to enforce the work order integrity.

iv is an initialization vector, if required by the data encryption algorithm. The default is all zeros. If

the same encryption key is used to encrypt more than one data item or the hash value of the work

order request, iv must be a unique random number for every encryption operation. It is included

only in the Work Order request.

7.1.8 Work Order Signing

Work Order request and response signing depends on the value of payloadFormat in the work order

request.

for JSON-RPC signing mechanism is defined in section Signing for JSON-RPC format.

for JSON-RPC-JWT signing mechanism is defined in section Signing for JSON-RPC-JWT

format.

 for custom values the signing mechanism is application-specific, and is not defined in this

specification.

Note that there are two mechanisms ensuring the integrity of a work order request:

 encryptedRequestHash contains the hash of the work order request encrypted with a key from

encryptedSessionKey. This mechanism ensures the request integrity even in the case of an

anonymous requester. The hash value in this case is verified by the worker.

 requesterSignature is an optional signature that uses the same calculated hash value and signs it

with the requester's private signing key. Distribution of the corresponding public keys is

outside of the scope of this specification. The signature is verified either by the service or by

the worker. The signature use is application-specific, and it is optional for the request integrity

verification. It can be used for the requester authentication and the Work Order authorization

outside or inside of the worker itself.

A Work Order request's signature is always generated by the worker that processed the Work

Order.

7.1.8.1 Request Hash Calculation and Encryption

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

34

This section defines steps for a Work Order request's hash calculation and encryption. All data

transmitted in BASE64 or HEX format have to be decoded for the hash calculation.

The hashing algorithm is defined in the Worker's parameter hashingAlgorithm, as per section

Common Data for All Worker Types.

First, the requester calculates the Work Order request hash:

Generate a random number and store its hash in requesterNonce.

Calculate a hash value of the string concatenating the following values: requesterNonce,

workOrderId, workerId, workloadId, and requesterId.

 For each item in the inData array calculate a hash value of the array concatenating dataHash,

data, encryptedDataEncryptionKey, iv. The array items are ordered according to the index field.

If data is encrypted, the hash is calculated over the encrypted data. If

`encryptedDataEncryptionKey contains an encrypted key, the hash is calculated over the

encrypted data.

 For each item in the outData array, calculate a hash value of the array concatenating dataHash,

data, encryptedDataEncryptionKey, iv. The array items are ordered according to the index field.

If data is encrypted, the hash is calculated over the encrypted data. If

`encryptedDataEncryptionKey contains an encrypted key, the hash is calculated over the

encrypted data.

 Combine all hashes calculated above into a single array in the order they were generated.

Calculate another hash of the combined array.

Then the requester must encrypt the calculated hash and include it in the Work Order request:

Encrypt the combined hash with a key from encryptedSessionKey

Format the encrypted hash as a HEX value

Place it in the encryptedRequestHash parameter of the Work Order request

Optionally, the calculated hash can be signed by the requester in one of the two formats as defined

in sections Signing for JSON-RPC Format and Signing for JSON-RPC-JWT Format.

7.1.8.2 Response Hash Calculation

This section defines the Work Order response hash calculation. All data transmitted in BASE64 or

HEX format have to be decoded for the hash calculation.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

35

The hashing algorithms is defined in Worker's parameter hashingAlgorithm, See section Common

Data for All Worker Types.

The worker performs the following steps:

Generate a random number and store its hash in workerNonce.

Calculate a hash value of the string concatenating following values workerNonce, workOrderId,

workerId, workloadId, and requesterId.

 For each item in the outData array, calculate a hash value of the array concatenating dataHash

and data. The array items are ordered according to the index field. If data is encrypted, the

hash is calculated over the encrypted data.

 Combine all hashes calculated above into a single array in the order they were generated.

Calculate another hash of the combined array.

7.1.8.3 Signing for JSON-RPC Format

This section defines a Work Order signing mechanism for the JSON-RPC payload format.

For a Work Order request, the signature is optional. If a signature is provided, it is generated

according to the following steps:

 The signing algorithm is defined in Worker's parameter signingAlgorithm, as per section

Common Data for All Worker Types.

 The Work Order request hash defined in section Request Hash Calculation and Encryption is

signed with requester's private signing key.

The signature is formatted as a BASE64 string.

The resulting string is placed in the requesterSignature of the Work Order request payload.

For a Work Order Response, the following steps are performed by the worker:

 The signing algorithm is defined in Worker's parameter signingAlgorithm, as per section

Common Data for All Worker Types.

 The Work Order response hash defined in section Response Hash Calculation is signed with

the worker's private signing key.

The signature is formatted as a BASE64 string.

The resulting string is placed in the workerSignature of the Work Order response payload.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

36

7.1.8.4 Signing for JSON-RPC-JWT Format

This section defines the Work Order signing mechanism for the JSON-RPC-JWT payload format.

The Work Order request requesterSignature and response workerSignatures are JWT formatted

strings.

The JWT header must include hashing and signing algorithms that match hashingAlgorithm and

signingAlgorithm parameters of the Worker. See section Common Data for All Worker Types.

The JWT payload is in the following format:

{

"hash": <HEX string>

}

The Work Order request hash parameter contains a value as defined in Request Hash Calculation

and Encryption.

The Work Order response hash parameter contains a value as defined in Response Hash

Calculation.

7.1.9 Get Encryption Key Request Payload

This section defines a JSON RPC request that is called by a requester to receive a Worker's key.

Normally, it is used if the Worker supports requester-specific encryption keys in addition to or

instead of the encryptionKey defined in section Appendix A: Worker Specific Detailed Data.

If this request fails, then a Work Order Status Payload is returned. The following values are defined

for the code parameter:

1 - generic error

2 - operation is not supported

3 - invalid parameter

4 - access denied

5 - not ready, retry later. This is a recoverable error that may happen if the requester makes

its first request for keys, or the requester retrieves keys, faster than the worker produces them.

The requester should retry later.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

37

If this request succeeds, the response is defined in section Get Encryption Key Response Payload.

The payload format:

{

 "jsonrpc": "2.0",

 "method": "EncryptionKeyGet",

 "id": <integer>,

 "request": {

 "workerId": <hex string>,

 "lastUsedKeyNonce": <hex string>,

 "tag": <hex string>,

 "requesterId": <hex string>,

 "signatureNonce": <hex string>,

 "signature": <BASE64 string>

 } } method must be EncryptionKeyGet. workerId is the id of the

worker whose encryption key is requested. lastUsedKeyNonce is an

optional nonce associated with last retrieved key. If it is provided,

the key retrieved should be newer than this one. Otherwise any key

can be retrieved.

tag is tag that should be associated with the returned key, e.g. requester id. This is an optional

parameter. If it is not provided, requesterId is used as a key.

requesterId is the id of the requester that plans to use the returned key to submit one or more work

orders using this key. signatureNonce is an optional parameter and is used only if signature below is

also provided.

signature is an optional signature of workerId, lastUsedKeyNonce, tag, and signatureNonce. The

hashing and signing algorithms are defined in hashingAlgorithm and encryptionAlgorithm for the

Worker in section Common Data for All Worker Types.

7.1.10 Get Encryption Key Response Payload

This section defines a payload returned by the Worker Service in response to successful Get

Encryption Key Request Payload.

{

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

38

 "jsonrpc": "2.0",

 "id": <integer>,

 "request": {

 "workerId": <hex string>,

 "encryptionKey": <hex string>, "encryptionKeyNonce": <hex string>,

 "tag": <hex string>,

 "signature": <BASE64 string>

 } }

workerId is the id of the worker that created the encryption key.

encryptionKey is an encryption key. encryptionKeyNonce is a

nonce associated with the key. tag is tag associated with the key.

signature is a signature generated by the worker. The hashing and signing algorithms are defined in

hashingAlgorithm and encryptionAlgorithm for the worker in section Common Data for All Worker

Types. The signature is calculated as follows:

 a hash is calculated over the concatenation of workerId, encryptionKey, encryptionKeyNonce, and

tag.

 the hash is signed by the worker's signing key corresponding to verificationKey defined in

Appendix A. the hash is formatted as BASE64 string.

7.1.11 Set Encryption Key Request Payload

This section defines a JSON RPC request that is called by a Worker or Worker Service to receive a

Worker's key.

The response to this request is a Work Order Status Payload. The error values are defined in section

Set Encryption Key Request Payload The payload format:

{

 "jsonrpc": "2.0",

 "method": "EncryptionKeySet",

 "id": <integer>,

 "request": {

 "workerId": <hex string>,

 "encryptionKey": <hex string>, "encryptionKeyNonce": <hex string>,

 "tag": <hex string>,

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

39

 "signatureNonce": <hex string>,

 "signature": <BASE64 string>

 } } method must be EncryptionKeySet.

Other parameters are defined in section Get Encryption Key Response Payload.

7.2 Proxy Model Invocation

This section defines a Work Order execution mechanism using the Invocation proxy Ethereum

smart contract created by the WorkerService for its associated Worker(s). Its address is available in

the Worker Service Registry.

7.2.1 Submitting a New Work Order

This function creates a new Work Order. It is called by a ÐApp or an enterprise application smart

contract from the Requester’s address. The Proxy Smart Contract is called by a ÐApp or an

enterprise application from the Requester’s Ethereum address.

As a side effect this function may create a Work Order Receipt for the Work Order.

This function emits event workOrderNew.

This function uses an implicit parameter transaction sender that is included in the event

workOrderNew and returned by workOrderGetRequest.

Inputs:

workOrderId should match the corresponding field in the workOrderRequest. workerId should

match the corresponding field in the workOrderRequest. requesterId is a requester id that must

match the corresponding field in the workOrderRequest. workOrderRequest is a Work Order

request data in one of the following formats

 JSON payload as defined in the details of the workOrderRequest in section Direct Model

Invocation.

 HTTP(S) URI that points to the same JSON payload as above. A URI is normally used to

minimize the storage required to store the work order on the blockchain.

Outputs:

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

40

errorCode is an error code, 0 - success, otherwise an error.

function workOrderSubmit(bytes32

workOrderId, bytes32 workerId,

bytes32 requesterId,

 string workOrderRequest) public returns uint32 errorCode

7.2.2 New Work Order Event

This event is emitted by workOrderSubmit function; workOrderId is the submitted Work Order id.

This event is intended for the Worker(s) that is supposed to execute the Work Order.

Parameters

workOrderId, workerId, requesterId, workOrderRequest, and errorCode are defined in section

Submitting a New Work Order.

senderAddress is an Ethereum address from which a corresponding workOrderSubmit() call was

done. version is a version of the API, e.g. value 0x01020381 corresponds to version "1.2.3.129".

event workOrderNew (bytes32 indexed workOrderId, bytes32

indexed workerId, bytes32 indexed requesterId, string

workOrderRequest, uint32 errorCode, address

senderAddress, byte4 version)

7.2.3 Completing a Work Order

This function is called by the Worker Service to complete a Work Order successfully or in error.

This function can be executed either from the Worker or Worker Service address.

This function may emit event workOrderDone.

Inputs:

workOrderId is an id of the Work Order provided during call to workOrderSubmit. workOrderStatus

is the work order completion status. Zero is success, otherwise is an error. workOrderResponse is the

Work Order response data in one of the following formats

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

41

 JSON payload as defined in the details of the workOrderRequest in section Direct Model

Invocation.

 HTTP(S) URI that points to the same JSON payload as above. A URI is normally used to

minimize storage required to store the work order on the blockchain.

Outputs:

errorCode is an error code, 0 - success, otherwise an error.

function workOrderComplete(bytes32 workOrderId, uint32

workOrderStatus,

 string workOrderResponse) public returns (uint32 errorCode)

7.2.4 Work Order Done Event

This event is emitted by workOrderComplete. This event is intended for the Requester who

submitted the Work Order.

Inputs:

requesterId is an Id of the Requester that submitted the Work Order

workOrderId, workOrderStatus, workOrderResponse, and errorCode are defined in section Completing

a Work Order.

version is the version of the API, e.g. value 0x01020381 corresponds to version "1.2.3.129"

event workOrderDone(bytes32 requesterId, bytes32

workOrderId, uint32 workOrderStatus, string

workOrderResponse, uint32 errorCode, bytes4

version)

7.2.5 Retrieving Work Order Response Information

This is an optional function that returns a Work Order response. It is recommended to only allow

this function to be called from the address of the Requester who submitted this Work Order.

Inputs:

workOrderId is an id of the Work Order for which to retrieve a response

Outputs:

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

42

workOrderId, workOrderStatus, workOrderResponse, and errorCode are defined in section Completing

a Work Order.

function workOrderGetResult(bytes32 workOrderId) public view returns(uint32

errorCode, bytes32 workOrderId, uint32 workOrderStatus, string

workOrderResponse)

)

7.2.6 Setting Encryption Key

This function is used by the Worker Service to set an encryption key, e.g. for a specific requester.

Inputs:

workerId, keyNonce, tag, and signature are defined in section Get Encryption Key Response

Payload. Outputs:

errorCode is the result of the operation. Zero is success, other values indicate an error occurred.

This function may emit the event encryptionKeySet defined in section Encryption Key Set

Event

function encryptionKeySet(bytes32 workerId, bytes32

tag, bytes32 nonce,

 bytes signature) public returns (uint32 errorCode))

7.2.7 Encryption Key Set Event

This event is emitted by encryptionKeySet.

Inputs:

Its parameters defined in section Setting Encryption Key.

event encryptionKeySet(bytes32 indexed workerId, bytes32

indexed tag, bytes32 nonce, bytes signature uint32

indexed errorCode)

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

43

7.2.8 Retrieving Encryption Key

This function is used by the requester to get an encryption key.

Inputs:

Input parameters are defined in section Set Encryption Key Request Payload.

Outputs:

errorCode is the result of the operation. Its values are defined in section Get Encryption Key

Request Payload. If errorCode is "5 - not ready, retry later", the requester should call function

encryptionKeyStart() defined in section Starting Encryption Key Generation.

Other output parameters are defined in section Setting Encryption Key.

<pre class="solidity">function encryptionKeyRetrieve(bytes32 workerId, bytes32

lastUsedKeyNonce, bytes32 tag,

 bytes32 requesterId) public view

returns(uint32 errorCode, bytes32 workerId,

bytes32 tag, bytes32 nonce, bytes

signature

)

7.2.9 Starting Encryption Key Generation

This function is used by the requester to inform the Worker that it should start encryption key

generation for this requester (and/or tag).

Inputs:

tag is an optional parameter. If it is zero, the transaction sender's address is used as a tag.

Outputs:

errorCode is a result of operation. Its values are defined in section Get Encryption Key Request

Payload.

This function may emit the event encryptionKeyStart defined in section Encryption Key Start

Event

function encryptionKeyStart(bytes32 tag) returns(uint32 errorCode),)

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

44

7.2.10 Encryption Key Start Event This event

is emitted by encryptionKeyStart.

Inputs:

requesterAddress is a sender address who submitted a corresponding call to encryptionKeyStart.

tag and serrorCode are defined in section Starting Encryption Key Generation.

event encryptionKeyStart(bytes32 indexed requesterAddress, bytes32 indexed

tag, uint32 indexed errorCode)

8. Work Order Receipts

This chapter defines two modeLs for Work Order Receipts:

 Smart contract mode when receipts are managed by an Ethereum Work Order Receipts smart

contract.

 Direct model when receipts are managed off-chain and accessed via JSON RPC API.

8.1 Proxy Model Receipt Handling

This API provides the following capabilities:

Creating Work Order receipt by the Requester.

Updating Work Order by the Requester, by the Worker assigned to execute the work order, or

any other authorized participant.

Retrieving a Work Order Receipt information.

Retrieving Work Order Receipt updates.

Enumerating Work Order Receipts.

Generating Ethereum log events on the receipt create and update.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

45

8.1.1 Creating a Work Order Receipt

This function is implemented by Work Order Receipts smart contract and is called by a Requester,

or on behalf of a Requester, to create a Work Order Receipt in the submitted state.

The sender address is an implicit parameter that is saved as a part of the receipt.

Inputs:

workOrderId is the id of the Work Order.

workerId is the Worker id that should execute the Work Order. workerServiceId is an

id of the Worker Service that hosts the Worker. requesterId is the id of the requester.

receiptCreateStatus is an initial receipt status, it can be

0 - "pending". The work order is waiting to be processed by the worker

1 - "completed". The worker processed the Work Order and no more worker updates are

expected

 2 - "processed". The worker processed the Work Order, but additional worker updates are

expected, e.g. oracle notifications

 3 - "failed". The Work Order processing failed, e.g. by the worker service because of an invalid

workerId

4 - "rejected". The Work Order is rejected by the smart contract, e.g. invalid

workerServiceId values from 5 to 254 are reserved value 255 indicates any status

values above 255 are application specific values

workOrderRequestHash is a hash value of the work order request as defined in section

Submitting a New Work Order.

Outputs:

errorCode is a result of the function. A value of '0' indicates success, other values indicate an error

occurred.

function workOrderReceiptCreate(bytes32 workOrderId, bytes32

workerId, bytes32 workerServiceId, bytes32 requesterId, uint32

receiptCreateStatus,

 bytes workOrderRequestHash) public returns (uint32 errorCode)

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

46

8.1.2 Updating a Work Order Receipt

This API is implemented by a Work Order Receipts smart contract and it can be called by one of

the following participants:

 By or on the behalf of the Worker identified during the receipt creation, e.g. to notify about the

work order completion

By or on the behalf of other Workers, e.g. to submit an oracle notification

By the Work Order Receipt creator (requester)

By other participants, e.g. to acknowledge the Work Order results in case of multi-party Work

Order processing

Inputs:

workOrderId is the id of the Work Order.

updaterId is the id of the updating entity. It is optional, if it is the same as the transaction sender

address.

updateType is a type of the Work Order update that defines how the update should be handled

 If updateType is from 0 to 255, the update sets the receipt status to updateType value, as

descrined in section Creating a Work Order Receipt

 If it is any other value, the processing is application-specific updateData are

update-specific data that depend on the 'workOrderStatus ̀ as follows:

 If the update sets the Work Order Receipt status to completed or processed, it is a hash value of

the Work Order Response

 in all other cases, updateData has an application-specific value not define by this specification.

updateSignature is an optional signature of workOrderId, updateType, and updateData. It is required

only if the updaterId is not the same as the transaction sender address. The hashing and signing

algorithms are defined by signatureRules.

signatureRules defines hashing and signing algorithms, that are separated by forward slash '/', e.g.

"SHA-256/RSA-OAEP-4096". It is an optional parameter and it is required if signing algorithms

are different from the algorithms defined for the Worker defined during the receipt creation.

Outputs:

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

47

errorCode is the result of the function. A value of '0' indicates success, other values indicate that an

error occurred.

function workOrderReceiptUpdate(bytes32 workOrderId, bytes32

updaterId, uint32 updateType, bytes updateData, bytes

updateSignature,

 string signatureRules) public returns (uint32 errorCode)

8.1.3 Retrieving a Work Order Receipt

Authorized entities can retrieve a Work Order receipt using this function.

Inputs:

workOrderId is the id of the Work Order to be retrieved.

Outputs:

workerServiceId, requesterId, `̀ workOrderId, receiptCreateStatus, and workOrderRequestHash are

defined in section Creating a Work Order Receipt.

currentReceiptStatus matches

 the receiptCreateStatus at the time of the receipt creation, if there have not been any receipt

updates changing its status

 the status set by the latest receipt update

function workOrderReceiptRetrieve(bytes32 workOrderId) public view returns(bytes32

workerServiceId, bytes32 workerId, bytes32 requesterId, uint32 receiptCreateStatus,

bytes workOrderRequestHash, uint32 currentReceiptStatus)

8.1.4 Retrieving a Work Order Receipt Update

Authorized entities can retrieve a Work Order receipt update using this function.

Inputs:

workOrderId is the id of the Work Order to be updated. updaterId is the id of

the updating entity. If it null, updaterId is ignored. updateIndex is an index of

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

48

the update to retrieve. Value "0xFFFFFFFF" is reserved to retrieve the last

received update.

Outputs:

updaterId, updateType, updateData, updateSignature, and signatureRules are defined in section

Updating a Work Order Receipt.

updateCount contains the total number of updates for this receipt, if updaterId is null, otherwise the

total number of updates made by 'updaterId'.

function workOrderReceiptUpdateRetrieve(bytes32 workOrderId, bytes32 updaterId,

 int4 updateIndex) public view returns(bytes32 updaterId, uint32 updateType,

bytes updateData, bytes updateSignature, string signatureRules, uint32

updateCount)

8.1.5 Work Order Receipt Lookup

This function retrieves a list of receipt Ids filtered by one or more input parameters. If more than

one input parameter is provided, a receipt must match all parameters to be included in the list

(Boolean AND operation).

Inputs:

workerServiceId is the id of the Worker Service whose receipts will be retrieved.

workerId is the Worker id whose receipts are requested. requesterId is the id of the

entity requesting receipts.

receiptStatus defines the status of the receipts retrieved. The supported values are defined in section

Creating a Work Order Receipt.

Outputs:

totalCount is the total number of receipts matching the lookup criteria. If this number is larger than

the size of the ids array, the caller should use a lookupTag to call workOrderReceiptLookUpNext to

retrieve the rest of the receipt ids.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

49

lookupTag is an optional parameter. If it is returned, it means that there are more matching receipts

than can be retrieved by calling workOrderReceiptLookUpNext with this tag as an input parameter. ids

is an array of the Work Order receipt ids that match the input parameters.

function workOrderReceiptLookUp(bytes32 workerServiceId, bytes32

workerId, bytes32 requesterId, uint32 receiptStatus) public view returns(

int totalCount, string lookUpTag, //OPTIONAL bytes32[] ids)

8.1.6 Work Order Receipt Lookup Next

This function is called to retrieve additional results of the Work Order receipt lookup initiated by

the workOrderReceiptLookUp call.

Inputs:

workerServiceId, workerId, and requesterId are input parameters and lastLookupTag is one of the

output parameters for the function workOrderReceiptLookUp defined in section Work Order Receipt

Lookup.

Outputs:

totalCount is the total number of receipts matching the lookup criteria.

lookupTag is an optional parameter. If it is returned, it means that there are more matching receipts,

that can be retrieved by calling this function again with this tag as an input parameter.

ids is an array of the Work Order receipt ids that match the input criteria from the corresponding

call to workOrderReceiptLookUp.

function workOrderReceiptLookUpNext(byte32 workerServiceId, bytes32

workerId, bytes32 requesterId, uint32 receiptStatus, string lastLookUpTag)

public view returns(int totalCount, string lookUpTag, bytes32[] ids)

8.1.7 Work Order Receipt Update Event

The smart contract can use the Ethereum event log for receipt updates.

An event as described below is emitted by the function workOrderReceiptUpdate. Its parameters are

defined in section Updating a Work Order Receipt.

event workOrderReceiptUpdated(bytes32 indexed workOrderId, bytes32

indexed updaterId, bytes32 indexed updateType, bytes updateData,

bytes updateSignature, string signatureRules, uint32 errorCode)

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

50

8.1.8 Work Order Receipt Create Event

The smart contract can use the Ethereum event log to capture receipt creation.

An event as decribed below is emitted by function workOrderReceiptCreate. Its parameters are

defined in section Creating a Work Order Receipt.

<pre class="solidity">event workOrderReceiptCreated(bytes32 indexed workO bytes32 indexed

workerServiceId, bytes32 workerId, bytes32 indexed requesterId, bytes32 receiptStatus, bytes

workOrderRequestHash, uint32 errorCode)</pre>

8.2 Direct Model Receipt Handling

Work Order Receipt management can be done off-chain by a dedicated service, or in some cases by

a Worker Service itself.

This section defines the Work Order Receipts JSON RPC API to support this model. Requesters

and Workers invoke this API without relying on blockchain smart contracts, hence this is called the

"direct model".

This API assumes a synchronous request-response model when the result is returned during the

same HTTP session. An asynchronous mode is not defined in this revision, but may be added later.

8.2.1 Status and Error Payload Structure

All error responses and status are reported in the format defined in the section RPC Encoding

Conventions. This format is also used to report a successful request if the request does not assume

any return values, e.g. creating a Work Order receipt.

8.2.2 Receipt Create Request Payload

This request is sent by a Requester to create a new Work Order Receipt. This request does not have

a specific corresponding response payload, hence the error and status payload is used as a response.

{

 "jsonrpc": "2.0",

 "method": "WorkOrderReceiptCreate",

 "id": <integer>,

 "params": {

 "workOrderId": <hexadecimal string>

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

51

 "workerServiceId": <hexadecimal string>,

 "workerId": <hexadecimal string>,

 "requesterId":< <hexadecimal string>,

 "receiptCreateStatus":< <number>,

 "workOrderRequestHash": <base64 string>

 "requesterGeneratedNonce": <hexadecimal string>,

 "requesterSignature": <base64 string>,

 "signatureRules": <string>

 } } method must be WorkOrderReceiptCreate.

params is a collection of the request parameters below:

workOrderId, workerServiceId, workerId, requesterId, receiptCreateStatus, and workOrderRequestHash

are defined in section Creating a New Work Order Receipt.

requesterGeneratedNonce is a random number or a monotonic counter generated by the Requester

and included in the signature below.

requesterSignature is a signature of the hash calculated over the the concatenated workOrderId,

workerServiceId, workerId, requesterId, workOrderStatus, workOrderRequestHash and

requesterGeneratedNonce parameters. Hashing and signing algorithms are defined by the

signatureRules parameter. Verification key provisioning is application-specific, e.g. it can be an

explicit mapping between the key and requesterId or requesterId can be an Ethereum address or a

verification key itself.

signatureRules defines hashing and signing algorithms, that are separated by a forward slash '/', e.g.

"SHA-256/RSA-OAEP-4096". It is an optional parameter and it is required if the signing

algorithms are different from the algorithms defined for the Worker defined by workerId.

8.2.3 Receipt Update Request Payload

This request payload is sent to update the Receipt. This request does not have a specific

corresponding response payload - a generic error response is returned.

{

 "jsonrpc": "2.0",

 "method": " WorkOrderReceiptUpdate",

 "id": <integer>,

 "params": {

 "workOrderId": <hexadecimal string>,

 "updaterId": <hexadecimal string>,

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

52

 "updateType": <number>,

 "updateData": <base64 strings>,

 "updateSignature": <base64 string>,

 "signatureRules": <base64 string>

 } } method must be WorkOrderReceiptUpdate.

params is a collection of the parameters defined in section Updating a New Work Order Receipt

with the following exceptions:

updateSignature is always required

If an updating entity is a Worker, than the Worker's verification key is used to verify the

signature

 If an updating entity is not a worker (requester, participant), the verification key provisioning is

application-specific, e.g. it can be an explicit mapping between the key and requesterId or

requesterId can be an Ethereum address or a verification key itself.

8.2.4 Receipt Retrieve Request Payload

This request is sent to retrieve a Work Order Receipt. The response to this request is defined in

section Receipt Retrieve Responce Payload.

{

 "jsonrpc": "2.0",

 "method": "WorkOrderReceiptRetrieve",

 "id": <integer>,

 "params": {

 "workOrderId": <hexadecimal string>

 } } method must be WorkOrderReceiptRetrieve.

params is a collection of the parameters defined in section Updating a New Work Order Receipt.

8.2.5 Receipt Retrieve Response Payload

This payload is returned to a Requester in response to the request defined in section Receipt

Retrieve Request Payload.

{

 "jsonrpc": "2.0",

 "id": <integer>,

 "result": {

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

53

 "workOrderId": <hexadecimal string>

 "workerServiceId": <hexadecimal string>,

 "workerId": <hexadecimal string>,

 "requesterId":< <hexadecimal string>,

 "requestCreateStatus":< <number>,

 "workOrderRequestHash": <base64 string>

 "requesterGeneratedNonce": <hexadecimal string>,

 "requesterSignature": <base64 string>,

 "signatureRules": <string>,

 "receiptCurrentStatus": <number>

 } }

result is a collection of the parameters defined in section Receipt Create Request Payload.

8.2.6 Receipt Update Retrieve Request Payload

This request is sent to retrieve a Work Order Receipt Update. The response to this request is

defined in section Receipt Update Retrieve Response Payload.

{

 "jsonrpc": "2.0",

 "method": "WorkOrderReceiptUpdateRetrieve",

 "id": <integer>,

 "params": {

 "workOrderId": <hexadecimal string>,

 "updaterId": <hexadecimal string>, "updateIndex": < number>

 } } method must be WorkOrderReceiptUpdateRetrieve.

params is a collection of the input parameters defined in section Retrieving a Work Order Receipt

Update.

8.2.7 Receipt Update Retrieve Response Payload

This payload is sent back to a Requester in response to the request defined in section Work Order

Receipt Retrieval Request Payload.

<pre class="JSON">{

"jsonrpc": "2.0",

"id": <integer>,

"result": {

 "updaterId": <hexadecimal string>,

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

54

 "updateType": <number>,

 "updateData": <base64 strings>,

 "updateSignature": <base64 string>,

 "signatureRules": <base64 string>,

 "updateCount": < number>

}

} result is a collection of the parameters below:

updaterId, updateType, updateData, updateSignature, and signatureRules are defined in section

Receipt Update Request Payload.

updateCount contains the total number of updates for this receipt, if the updaterId is null.

Otherwise it returns the total number of updates made by the entity whose id is 'updaterId.

8.2.8 Receipt Lookup Request Payload

This payload is sent by a Requester to get a list of Work Order Receipt Ids matching the input

parameters. If more than one input parameter is provided, a receipt must match all parameters to be

included in the list (Boolean AND Operation).

The response to this request is defined in section Receipt Lookup Response Payload. Note that the

response may not provide a complete list of matching ids, and the Requester may need to send one

or more WorkOrderReceiptLookUpNext calls in order to retrieve the complete list.

{

 "jsonrpc": "2.0",

 "method": "WorkOrderReceiptLookUp",

 "id": <integer>,

 "params": {

 "workerServiceId": <hex string>,

 "workerId": <hex string>,

 "requesterId": <hex string>,

 "receiptStatus": <hex string>

 } } method must be WorkOrderReceiptLookUp.

params is a collection of the input parameters defined in section Work Order Receipt Lookup.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

55

8.2.9 Receipt Lookup Response Payload

This payload is sent back to a Requester in response to the request defined in sections Receipt

Lookup Request Payload and Receipt Lookup Next Request Payload.

{

 "jsonrpc": "2.0",

 "id": <integer>,

 "result": {

 "totalCount": <int>,

 "lookUpTag": < string>, //OPTIONAL

 "ids":[<hexadecimal string>]

 } }

result is a collection of the output parameters defined in section Work Order Receipt Lookup.

8.2.10 Receipt Lookup Next Request Payload

This function is called to retrieve additional results of the Work Order receipt lookup initiated by

the request defined in section Receipt Lookup Request Payload. Since the call may not return the

complete list of ids, more than one lookup may be necessary to retrieve the complete list. Each call

should use the value of lookupTag returned by the previous call.

The response to this request is defined in section Work Order Receipt Lookup Response Payload.

{

 "jsonrpc": "2.0",

 "method": "WorkOrderReceiptLookUpNext",

 "id": <integer>,

 "params": {

 "workerServiceId": <hexadecimal string>,

 "workerId": <hexadecimal string>,

 "requesterId": <hexadecimal string>,

 "receiptStatus": < hexadecimal string>,

 "lastLookUpTag": <hexadecimal string>

 } } method must be WorkOrderReceiptLookUpNext,

params is a collection of the input parameters defined in section Work Order Receipt Lookup.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

56

9. Appendix A: Worker Specific Detailed Data

This appendix defines data to be included in the details parameter defined in section Registering a

New Worker. These include data common to all worker types, and data specific to each worker

type.

9.1 Common Data for All Worker Types

{

 "workOrderSyncUri": <hex string>,

 "workOrderAsyncUri": <hex string>,

 "workOrderPullUri": <hex string>,

 "workOrderNotifyUri": <hex string>,

 "receiptInvocationUri": <hex string>,

 "workOrderInvocationAddress": <hex string>,

 "receiptInvocationAddress": <hex string>,

 "fromAddress": <hex string>,

 "hashingAlgorithm": <string>,

 "signingAlgorithm": <string>,

 "keyEncryptionAlgorithm": <string>,

 "dataEncryptionAlgorithm": <string>,

 "workOrderPayloadFormats": [<hex string>],

 "workerTypeData" : { …} }

workOrderSyncUri, workOrderAsyncUri, workOrderPullUri, and workOrderNotifyUri

are URIs to be used in the direct model to submit work orders, and correspondingly in

synchronous, asynchronous, pull, and notification modes. Multiple Workers belonging to the same

organization can share the same URI.

receiptInvocationURI is a URI that should be used to manage Work Orders receipts processed by this

Worker in the direct model. Multiple Workers such as Workers belonging to the same organization

can share the same URI.

workOrderInvocationAddress is an address of the Work Order Invocation Proxy smart contract that

should be used to submit Work Orders for the Worker in the proxy model.

receiptInvocationAddress is an address of the Work Order Receipt smart contract that should be used

to submit Work Order receipts in the proxy model. Multiple Workers can share the same address.

fromAddress is an Ethereum address that is used by or on behalf of this Worker to submit

transactions. It can be the same as the trusted compute service's id.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

57

hashingAlgorithm is an optional string containing a comma-separated list of the supported hashing

algorithms. The default is SHA-256. Defined values are:

SHA-256

KECCAK-256

signingAlgorithm is an optional string containing a comma-separated list of the supported signing

algorithms. The default is SECP256K1. Examples:

 SECP256K1

 RSA-OAEP-3072

keyEncryptionAlgorithm is a string containing an asymmetric encryption algorithm used by the

worker to encrypt symmetric data encryption key, e.g. RSA-OAEP-3072.

dataEncryptionAlgorithm is an optional string containing a comma-separated list of the supported

data encryption algorithms, e.g. AES-GCM-256. For an AES GSM encrypted message starts with

the tag that is followed by the cypher text.

workOrderPayloadFormats defines the formats for Work Order requests and responses. A Worker

may support multiple formats. This specification currently defines the following payload formats

(this list is expected to grow):

 JSON-RPC – the payloads are provided in JSON RPC format as defined in section RPC

Encoding Conventions without using JWT format for signatures.

 JSON-RPC-JWT – the payloads are provided in JSON RPC format as defined in section RPC

Encoding Conventions. In this case JWT format is used for the signatures.

 Custom Work Order payload formats should start with tilde "~".

workerTypeData contains the Worker type specific details defined below.

9.2 TEE Worker Data

This section currently includes details for Intel SGX. Details for other TEEs may be added in the

future.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

58

9.2.1 Intel SGX Worker Type Data

This subsection defines data for the "TEE-SGX" worker type. Refer to parameter workType in

section Registering a New Worker.

Identification and attestation payload:

{

 "workerTypeData": {

 "verificationKey": <hex string>,

 "extendedMeasurements": [<string>],

 "proofDataType": <hex string>,

 "proofData": {...},

 "encryptionKey": <optional hex string>,

 "encryptionKeyNonce": <optional hex string>,

 "encryptionKeySignature": <optional hex string>,

 "enclaveCertificate": <optional string>

 } }

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is a hex string representing an ECDSA/SECP256K1 public key used to verify

signatures created by the Enclave. This field must be included in the proofData.

extendedMeasurements is a string that implements application-specific logic. For example, in the

case of an enclave pool including more than one type of enclave (each having a different

MRENCLAVE value), this parameter may contain a comma separated list of hexadecimal strings,

one for each MRENCLAVE. See Load Balancing and Enclave pools

Requesters are expected to verify the Enclave measurements off-chain unless the blockchain client

contains a pre-compiled contract that verifies the Enclave measurements on-chain at the Enclave's

registration time. For details on the matching mechanism refer to

https://software.intel.com/enus/sgx.

proofDataType is one of the "TEE-" prefixed data types. Currently only the Intel SGX proof data

type is defined. More types may be defined later.

 TEE-SGX-IAS indicates that an Intel Attestation Server (IAS) issued a verification report for this

worker.

proofData is the worker attestation data. Its format is defined below in sub-section "Proof Data

Format".

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

59

encryptionKey is a hex string representing an RSA public key used to encrypt data sent to the

Enclave. This field must be signed as described in encryptionKeySignature.

encryptionKeyNonce is a hex string. It is either a random number or a monotonic counter updated

every time a new encryptionKey is generated.

encryptionKeySignature is a hex string representing a signature of encryptionKey signed with the

worker's private signing key. The requester must verify the signature using 'verificationKey'. It is

not required if 'enclaveCertificate ̀ is provided.

enclaveCertificate is a string representing the enclave certificate signed by worker's private signing

key, and must include the encryptionKey and encryptionKeyNonce. The enclave certificate should be

in X.509 format.

Please note that at least one of the two options are mandatory for a requester's verification:

 Provide encryptionKey and encryptionKeySignature in the workerTypeData payload.

 Fill enclaveCertificate in the workerTypeData payload.

Proof Data Format

For `TEE_SGX-IAS`, the `proofData` is in the following format:

{

 “X-IASReport-Signature”:<required, base64>,

 ”X-IASReport-Signing-Certificate”: <required, string>,

 “Advisory-URL”: <optional, string>,

 “Advisory-IDs”: <optional, string>,

 “Verification-report”:<required string> }

Refer to IAS API for parameter descriptions.

Verification-report:isvEnclaveQuoteBody:REPORTBODY:REPORTDATA contains a

SHA256 hash (first 32 bytes) of the concatenation of the decoded verificationKey and (UTF8)

extendedMeasurements values. The last 32 bytes are set to zero.

9.2.2 TEE-SGX Load Balancing and Enclave pools

This specification assumes that Enclaves can be grouped into groups for better load balancing and

manageability. In such a case the same verification and encryption keys are used to invoke

workloads by any of the Enclaves in a pool.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

60

 If the pool includes more than one type of enclave (each having a different MRENCLAVE

value), extendedMeasurements includes a comma-separated list of hexadecimal strings, one

for each MRENCLAVE. This list is provided to the enclave as an input by the hosting service.

The master Enclave generates verification and encryption keys

The master enclave calculates a SHA256 hash andd places it in

Verificationreport:isvEnclaveQuoteBody:REPORTBODY:REPORTDATA as defined in section Intel SGX

Worker Type Data.

A master Enclave is registered in the worker registry

The master Enclave uses the verification and encryption keys to forward and securely execute

workloads, only through the enclaves on the list provided in step 1

The exact Enclave pool provisioning mechanism is outside the scope of this specification. The

MRENCLAVE value included in the proofData:Verification-report can be used by the requester to

determine what mechanism is used to operate the enclave pool.

9.3 MPC Worker Data

This section defines data for worker type MPC. Refer to parameter workType in section Registering

a New Worker.

{

 "workerTypeData": {

 "workerType":<hex string>, //"MPC-" prefix

 "verificationKey": <hex string>,

 "encryptionKey": <hex string>,

 "proofDataType": <hex string>,

 "proofData": <hex string>,

 } }

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is a hex string representing a public key used to verify data provided by the MPC

worker. This field must be included in the proofData.

encryptionKey is as a hex string representing an asymmetric public key used to encrypt data sent to

the MPC worker. This field must be included in the proofData. proofDataType is one of the "MPC-"

prefixed data types to be defined in the future.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

61

proofData is proof data corresponding to the proofDataType. Refer to the section Implementation

Notes for more details.

9.4 ZK Worker Data

This section defines data for worker types "ZK". Refer to parameter workType in section

Registering a New Worker.

<dfn>Identification and attestation payload</dfn>

{

 "workerTypeData": {

 "workerType":<hex string>, //"ZK-" prefix

 "verificationKey": <hex string>,

 "encryptionKey": <hex string>,

 "proofDataType": <hex string>,

 "proofData": <hex string>,

 } }

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is as a hex string representing a public key used to verify proofs generated by the ZK

worker. This field must be included in the proofData.

encryptionKey is as a hex string representing an asymmetric public key used to encrypt data sent to

the ZK worker. This field must be included in the proofData. proofDataType is one of the "ZK-"

prefixed data types to be defined in future.

proofData is proof data corresponding to the proofDataType. Refer to Implementation Notes chapter

for more details.

10. Implementation Notes

This section is non-normative.

10.1 Note 1: Receipts

Work Order Receipts are created upon each successful or unsuccessful Work Order execution.

They are created and signed by the Requester and later updated and signed by the Worker making

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

62

sure that parties involved in the transaction can use it for tracking, auditing, dispute resolution, and

fraud detection. This specification supports per Work Order Receipt as an option.

It is left to the implementation to decide whether to store Receipts on the main blockchain or

somewhere else. Similarly, when supporting high volume use-cases (e.g. an IOT use-case), it is left

to the implementation to decide if Receipt updates to the main blockchain should be batched.

Implementations may decide to keep Receipts off the main blockchain such as in a side-chain or

trusted database.

10.2 Note 2: Worker Service

Details of a Worker Service are left for an implementation to decide. The following functions are

expected:

 A Worker Service can assist in registering a Worker with either the main blockchain or an

offchain registry.

 A Worker Service can support a single Worker or a group of Workers. Workers may be

registered individually, enabling Requesters to select a particular Worker for Work Order

execution, or multiple Workers may be registered and managed collectively as a Worker Pool.

When a Requester selects a Worker Pool, the Worker Service chooses which Worker(s) in the

pool will be used to execute a particular Work Order. Requesters should be able to look up all

Workers belonging to the same Worker Service. In this specification, a Worker Pool is used

synonymously with a Worker.

 A Worker is represented using a URI and an RSA and/or an ECDSA/SECP256K1 public key

set by its Worker Service on the main blockchain. A URI can represent a single Worker or

multiple individually addressable Workers, one or multiple Worker Pools, or any combination

of individually addressable Workers or Worker Pools. All Workers in a pool represented by a

single URI can share a common RSA and/or ECDSA/SECP256K1 public key set.

Appropriate pooling of Workers is left for deployments to decide. For example, pools could

be based on location of Workers, type of Workers, etc.

 A Worker Service can act as a proxy for signing Ethereum transactions originating in a Worker

(e.g. the Worker Service has the Ethereum address that is used to create an Ethereum

transaction that contains the updated Work Order Receipt generated by a Worker).

 The same from Ethereum address (and its associated account address) can be used by the

Worker Service on behalf of all or some of its Workers. Alternatively, an individual Ethereum

address can be assigned to each Worker.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

63

Proxy JSON APIs are for Work Order invocation by a Worker in direct mode.

If a Worker Service supports the Work Order proxy invocation mode, it should deploy at least

one Work Order Invocation Proxy smart contract, but may deploy more. The same smart

contract address can be used for submitting Work Orders to multiple Workers.

Given that a Worker Service and a Worker can have 1-to-1 or 1-to-many relationships, the term

Worker as used in this specification may imply a Worker Service as appropriate.

10.3 Note 3: Proof Data

This specification supports different work proof data types for different types of Trusted Computes.

The following proof data types are currently defined:

 TEE-Proof is an attestation produced by a TEE that the requester can use to validate that the

work order was executed inside a TEE.

 ZK-Proof is the witness produced by a prover that verifiers can use to verify a claim with zero-

knowledge (for example, the correct execution of a piece of software on a specific input set

with a specific output). The proof data for non-interactive zero-knowledge proofs contains the

Witness and the Verification circuit together with the signature of the issuing trusted compute

resource.

 MPC-Proof are the m outputs computed by the m compute resources each holding a share of

the original input. The reconstruction of the shared m outputs yields the complete result of the

program that was converted into a randomized logical circuit of AND and XOR gates and

used to compute each output. The order of the gates itself has been randomized and both

inputs and outputs are encrypted. After the circuit construction has been shared amongst all

counterparties, the proof data consists of the m outputs of the application of the circuit signed

by the trusted resource and distributed to all participating compute resources.

 DID-Proof refers to the DID document object (DDO) as defined by the W3C. The proof data

contains the attesting DID and the information from the DDO required to verify the Worker.

This proof data type is reserved and may be defined in detail in the future versions of this

specification.

 Custom Proofs must start with a tilde "~"

10.4 Note 4: Security Consideration

The parameterencryptedDataEncryptionKey is defined in "Work Order Data Formats":

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

64

If the data item is sent encrypted with a one-time encryption key generated by a 3rd party that owns

this data item (it may be different from the work order requester), encryptedDataEncryptionKey

contains this encryption key in double encrypted format:

 First, it is encrypted with the worker's public encryption key (e.g. by a 3rd party that owns the

data so the requester cannot see the data)

 Then the result of the previous encryption above is encrypted with the key from

encryptedSessionKey(by the requester to enforce work order integrity)

The first step returns the encryption result that the data one-time encryption key is encrypted by a

worker's public key.

The second step returns the encryption result that the first step encryption result is further

encrypted by encryptedSessionKey.

The possible security issue is that since the first step encryption result refers to encryption by a

worker’s public key, this encryption result seems no longer a “secret” and can be transferred to

different requesters to proceed with step 2. However, if this first step encryption result is disclosed,

a man-in-the-middle attacker knowing a worker’s public key can then intercept the requester

payload, modify the payload parameter values, and generate the attacker’s fake

encryptedSessionKey which is then used to generate fake encryptedDataEncryptionKey as well as fake

encryptedRequestHash, and the worker is not able to detect this malicious attack at the run time.

If a data item belongs to a 3rd party other than requester, we recommend that the implementation

should be based on one of the following two options:

 Option 1: use the requesterSignature parameter in the payload: generate the requester payload’s

signature with the requester's private signing key, verified by the corresponding public key on

the worker side.

 Option 2: if the requesterSignature parameter is not used, the third party should establish a

secure channel with an authorized and verified requester to transfer the first step encryption

result.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

65

A. Additional Information

A.1 Terminology

A Requester is an entity that issues Work Orders using either a ÐApp or an application smart

contract. Requesters are identified by an Ethereum address or a DID that can be resolved to an

Ethereum address. Requester management is out of scope for this specification and will be covered

as part of EEA Requester permissioning.

A Worker is a computational resource for Work Order execution. A Worker may be identified by

an Ethereum address or a DID.

Trusted Compute is a trusted computational resource for Work Order execution. It preserves data

confidentiality, execution integrity and enforces data access policies. All Workers described in this

specification are also Trusted Compute. Trusted Compute may implement those assurances in

various ways. For example, Trusted Compute can base its trust on software-based cryptographic

security guarantees, a service’s reputation, virtualization, or a hardware-based Trusted Execution

Environment such as Intel’s SGX.

A Trusted Execution Environment (TEE) is a hardware-based technology that executes only

validated tasks, produces attested results, provides protection from malicious host software, and

enxures confidentiality of shared encrypted data.

An Enclave is an instantiation of Trusted Compute within a hardware based TEE. Certain

hardware based TEEs, including Intel SGX, allow multiple instances of Enclaves executing

concurrently. For simplification, in this specification the terms TEE and Enclave are used

interchangeably.

A Worker Service is an implementation dependent middleware entity that acts as a bridge for

communications between Ethereum Blockchain and a Worker. A Worker Service may belong to an

enterprise, a cloud service provider, or an individual sharing his or her available computational

resources (subject to provisioning).

A Work Order (WO) is a unit of work submitted by a Requester to a Worker for execution. Work

Orders may include one or more inputs (e.g. messages, input parameters, state, and datasets) and

one or more outputs. Work Order inputs and outputs can be sent as part of the request or response

body (a.k.a. inline) or as links to remote storage locations. Work Order inputs and outputs are

normally sent encrypted.

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

66

The Direct Model is a Work Order execution model in which a Requester ÐApp directly invokes a

JSON RPC network API for Work Order execution in a Worker.

The Proxy Model is a Work Order execution model in which a Work Order Invocation Proxy smart

contract is used by an enterprise application smart contract to invoke Work Order execution in a

Worker.

An Attested Oracle is a device that uses Trusted Compute to attest some data (e.g. environmental

characteristics, financial values, inventory levels).

B. References

B.1 Normative references

[JSON-RPC]

JavaScript Object Notation - Remote Procedure Call. JSON-RPC Working Group. URL:

http://www.jsonrpc.org/specification

[JSON-RPC-API]

Ethereum JSON-RPC API. Ethereum Foundation. URL:

https://github.com/ethereum/wiki/wiki/JSON-RPC

[RFC2119]

Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.

Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC7519]

JSON Web Token (JWT). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed

Standard. URL: https://tools.ietf.org/html/rfc7519

B.2 Informative references

[RFC8017]

PKCS #1: RSA Cryptography Specifications Version 2.2 . K. Moriarty, Ed.; B. Kaliski; J.

Jonsson; A. Rusch. IETF. November 2016. Informational. URL:

https://tools.ietf.org/html/rfc8017

[secp256k1]

SEC2: Recommended Elliptic Curve Domain Parameters. Certicom Research. URL:

http://www.secg.org/sec2-v2.pdf

© 2019 Enterprise Ethereum Alliance Inc. All rights reserved.

67

↑

