
Sanjay Bakshi (Intel)
Yevgeniy Yarmosh (Intel Lab)
Lei Zhang (iExec)
Andreas Freund (ConsenSys)

Contributors:

Bill Gleim (ConsenSys), Thomas Bertani (Oraclize), Jean-Charles Cabelguen (iExec),
Ben Towne (SAE ITC), Dan von Kohorn (ConsenSys /Independent), George Polzer
(Everymans.ai), Puneetha Karamsetty (blk.io), Tom Willis (Intel), Junji Katto (Itau)

Enterprise Ethereum Alliance
Off-Chain Trusted Compute
Specification V0.5
15 October 2018

Editors:

Abstract

This document specifies APIs that enable Off-Chain Trusted Compute for Enterprise Ethereum, to
support private transactions, offload for compute intensive processing and attested Oracles.

Legal Notice
The copyright in this document is owned by Enterprise Ethereum Alliance Inc. (“EEA” or
“Enterprise Ethereum Alliance”). No modifications, edits or changes to the information in this
document are permitted. Subject to the terms and conditions described herein, this document may
be duplicated for internal use, provided that all copies contain all proprietary notices and
disclaimers included herein. Except as otherwise provided herein, no license, express or implied,
by estoppel or otherwise, to any intellectual property rights are granted herein.

Use of this document and any related intellectual property incorporated herein, is also governed by
the Bylaws, Intellectual Property Rights Policy and other governing documents and policies of
EEA and is subject to the disclaimers and limitations described below.

§

1 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/offchain.html
mailto:sanjay.bakshi@intel.com
mailto:yevgeniy.y.yarmosh@intel.com

No use or display of any of the following names or marks “Enterprise Ethereum Alliance”, the
acronym “EEA”, the EEA logo or any combination thereof) to claim compliance with or
conformance to this document (or similar statements) is permitted absent EEA membership and
express written permission from the EEA. The EEA is in process of developing a compliance
testing and certification program only for the EEA members in good standing, which it expects to
launch in 2019.

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY
QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF
ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION
OR SAMPLE. EEA DOES NOT WARRANT THAT THIS DOCUMENT IS COMPLETE OR
WITHOUT ERROR AND DISCLAIMS ANY WARRANTIES TO THE CONTRARY.

Each user of this document hereby acknowledges that software or products implementing the
technology specified in this document (“EEA-Compliant Products”) may be subject to various
regulatory controls under the laws and regulations of various governments worldwide. Such laws
and regulatory controls may govern, among other things, the combination, operation, use,
implementation and distribution of EEA-Compliant Products. Examples of such laws and
regulatory controls include, but are not limited to, airline regulatory controls, telecommunications
regulations, finance industry and security regulations, technology transfer controls, health and
safety and other types of regulations. Each user of this document is solely responsible for the
compliance by their EEA-Compliant Products with any such laws and regulations and for obtaining
any and all required authorizations, permits, or licenses for their EEA-Compliant Products related
to such regulations within the applicable jurisdictions. Each user of this document acknowledges
that nothing in this document or the relevant specification provides any information or assistance in
connection with securing such compliance, authorizations or licenses.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES WHATSOEVER
REGARDING THE APPLICABILITY OR NON-APPLICABILITY OF ANY SUCH LAWS OR
REGULATIONS OR THE SUITABILITY OR NON-SUITABILITY OF ANY SUCH PRODUCT
OR SERVICE FOR USE IN ANY JURISDICTION.

EEA has not investigated or made an independent determination regarding title or non-infringement
of any technologies that may be incorporated, described or referenced in this document. Use of this
document or implementation of any technologies described or referenced herein may therefore
infringe undisclosed third-party patent rights or other intellectual property rights. The user is solely
responsible for making all assessments relating to title and non-infringement of any technology,
standard, or specification referenced in this document and for obtaining appropriate authorization to
use such technologies, standards, and specifications, including through the payment of any required
license fees.

2 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

1.
1.1

Introduction
Background

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR
NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR
SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT. IN NO
EVENT SHALL EEA OR ANY OF ITS MEMBERS BE LIABLE TO THE USER OR TO A
THIRD PARTY FOR ANY CLAIM ARISING FROM OR RELATING TO THE USE OF THIS
DOCUMENT, INCLUDING, WITHOUT LIMITATION, A CLAIM THAT SUCH USE
INFRINGES A THIRD PARTY’S INTELLECTUAL PROPERTY RIGHTS OR THAT IT FAILS
TO COMPLY WITH APPLICABLE LAWS OR REGULATIONS. BY USE OF THIS
DOCUMENT, THE USER WAIVES ANY SUCH CLAIM AGAINST EEA AND ITS
MEMBERS RELATING TO THE USE OF THIS DOCUMENT.

EEA reserves the right to adopt any changes or alterations to this document as it deems necessary
or appropriate without any notice. User is solely responsible for determining whether this
document has been superseded by a later version or a different document.

©2018 Enterprise Ethereum Alliance Inc. All Rights Reserved.

Status of This Document

This section describes the status of this document at the time of its publication. Newer documents
might supersede this document.

This document has been approved by the EEA Board of Directors for publication. This pre-release
specification was developed by the EEA Technical Specification Working Group and Trusted
Execution Task Force for review, improvement, and publication as an EEA standard.

The TSWG expects at time of writing to produce a new revision of this specification for release in
the second quarter of 2019 which would obsolete this version, either as a stand-alone specification
or by integrating it into an updated version of the the Enterprise Ethereum Alliance Client
Specification.

Please send any comments to the EEA Technical Steering Committee at
https://entethalliance.org/contact/.

Table of Contents

3 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

https://entethalliance.org/contact/

1.1.1
1.1.1.1

1.1.1.2

2.

3.

4.
4.1
4.1.1
4.2

5.
5.1
5.1.1

6.
6.1
6.2

7.
7.1

8.

9.
9.1
9.2
9.3

A.
A.1

B.
B.1
B.2

Invocation Models
Direct Model

Proxy Model

Conformance

Design Assumptions

RPC Encoding Conventions
Error and Status Formats

Parameters
JWT Signature Support

Worker Registry
Worker Registry Smart Contract API

Off-Chain Worker Registry JSON RPC API

Work Orders
Direct Model Invocation
Proxy Model Invocation

Work Order Receipts
Direct Model Receipt Handling

Appendix A: `workerTypeData` URI JSON RPC API

Implementation notes
Note 1: Receipts
Note 2: Worker Service
Note 3: Proof Data

Additional Information
Terminology

References
Normative references
Informative references

This section is non-normative.

This specification has four objectives:

1. Introduction §

4 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Support private transactions on a blockchain between mutually-untrusting parties without
disclosing transaction details to other parties who also have access to the blockchain.

Support disclosure of selected information to chosen parties on a blockchain, while
maintaining the secrecy of other information from those same chosen parties.

Offload intensive computational processing from a main blockchain to an off-chain Trusted
Compute for improved throughput and scalability.

Enable Attested Oracles.

These objectives are achieved by executing some parts of a blockchain transaction off the main
chain in off chain trusted compute. There are currently three types of Trusted Compute that are
supported by this specification:

Trusted Execution Environments (Hardware based)

Zero Knowledge Proofs (Software based)

Trusted Multi-Party-Compute (MPC) (Software/Hardware based)

The APIs are grouped in registration, invocation and receipt handing sections. Attested Oracles are
considered a special application of of Trusted Compute used to create increased trust in an Oracle.
Actual API refinements to support Attested Oracles will be addressed in the next release of this
specification.

Early blockchains delivered computational trust via massive replication but had limited throughput,
and imperfect privacy and security. Adding trusted off-chain execution to a blockchain is proposed
as way to improve blockchain performance in these areas. In this specification, a main blockchain
maintains a single authoritative instance of the objects, enforces execution policies, and ensures
transaction and results auditability, while associated off-chain trusted compute allows greater
throughput, increases Work Order integrity, and protects data confidentiality.

For terminology used in this specification please refer to the terminology section.

Figure 1 depicts an example Enterprise Ethereum blockchain with N member enterprises. Each
enterprise has Requestors, an Ethereum blockchain client and one or more Workers (supported by a
Worker Service). Requestors submit Work Orders, and Workers execute those Work Orders. Work
Order receipts can be recorded on the blockchain by the Ethereum clients running Smart Contracts.
While each of the enterprises in figure 1 contain all three major components, this is not necessary.
For example, Requestors from Enterprise 1 may send Work Orders to a Worker at Enterprise 2, and
the results may be recorded by an Ethereum Client at Enterprise 1. Accessing resources across
multiple enterprises increases network resilience, allows more efficient use of resources, and
provides access to greater total capacity than most individual enterprises can afford.

1.1 Background §

5 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Figure 1 Figure 1 Enterprise Ethereum Blockchain with Off-Chain Workers

In order to get these benefits of cooperation, participating Enterprises must register their
Requestors, Ethereum Clients, and Workers with the main blockchain. Each registered Requestor,
Ethereum Client, or Worker (or its Worker Service) will have its own unique Ethereum public key
(or a DID that can be resolved to an Ethereum public key) from which to receive or send
transactions.

A Requestor can submit a Work Order to a Worker via one of the following models:

In this invocation model Workers are invoked via JSON RPC network API. An organization
registers its workers with on chain smart contract(s) where a ÐApp can discover them. Post
discovery all the interactions between ÐApp and worker are done off the chain. Optionally,
transaction logs aka receipts maybe be stored on the chain.

1.1.1 Invocation Models §

1.1.1.1 Direct Model §

6 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Figure 2 Figure 2 Direct Invocation

In this invocation model Workers are invoked via a Work Order Invocation Proxy smart contract.
The Proxy Model is typically used to support usages in which an application smart contract or a
ÐApp does not prefer or cannot invoke a worker directly. An organization registers its workers
with on chain smart contract(s) where a ÐApp or another requesting smart contract can discover
them. Optionally, transaction logs aka receipts maybe be stored on the chain.

1.1.1.2 Proxy Model §

7 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation

Figure 3 Figure 3 Proxy Invocation

This version of the specification addresses only stateless (from the Worker viewpoint) execution,
e.g. the burden of maintaining state between Work Order invocations (if required) is on the caller.

A future version of the specification may include an additional model in which the off-chain logic,
acts as both the requestor and the worker and is the creator and controller of the Smart Contract.
The Smart Contract is branded by its creator and maintains the state of the contract. Logic within
the Smart Contract is minimally used for validating and enforcing security policies for state
changes and local transactions. This version relies on an external registry shared by contract
participants.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

This Specification extends the capabilities and interfaces of the Enterprise Ethereum Alliance
Client Specification, version 2.

2. Conformance §

8 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

The Application Programming Interfaces (APIs), JSON-RPC formats and parameters, "smart-
contract" functions and events described in this Specification are experimental. Experimental
means that a requirement or API may change as implementation feedback is incorporated.
Implementors are encouraged to implement these experimental requirements, with the knowledge
that requirements in future versions of the Specification are not guaranteed to be compatible with
the current version. Please send your comments and feedback on the experimental portions of this
Specification to the EEA Technical Steering Committee at https://entethalliance.org/contact/.

This section is non-normative.

The APIs in this specification assume the existence of :

A Worker Registry smart contract or an Off-Chain Worker Registry for registering various
Workers as a part of a deployment.

An optional Work Order Receipts smart contract and/or support for Work Order Receipts
JSON RPC API for Requestors to create Work Order receipts and for Workers to update Work
Order receipts upon completion of execution.

RPC APIs in the current version of the specification use [JSON-RPC-API]. Future versions of the
specification may support other mechanisms such as protobuf and gRPC.

For the Proxy Model, the APIs additionally assume the existence of a Work Order Invocation
Proxy smart contract (deployed by a Worker Service) for sending Work Orders. It is used by a
ÐApp or an enterprise application smart contract to invoke Work Order execution in a Worker.

For the Direct Model, Workers support the Work Order Execution JSON RPC API to receive Work
Orders from ÐApps

The APIs assume that a Worker:

Has an RSA [RFC8017] and potentially an ECDSA/SECP256K1 [secp256k1] public-private
key pair, that can be used to encrypt data (e.g. a one-time symmetric session key) and to create
digital signatures.

Can publish its public keys.

Never reveals its private keys.

Provides proof data that defines and attests what mechanisms and capabilities are used to
ensure Worker execution integrity, Requestor’s privacy, and data confidentiality.

3. Design Assumptions §

9 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

https://entethalliance.org/contact/
file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation

This specification assumes, but doesn’t define, a permissioning mechanism that would authorize
access to defined APIs. It assumes that implementation specific policies will be implemented and
enforced by the Worker Registry smart contract, optional Requestor Registry smart contract,
optional Work Order Invocation Proxy smart contract, and/or optional Work Order Receipts smart
contract.

The Delegate Model assumes a shared registry of workers and the associated repository for the
registered packaging, binary (.jar, .dll, etc.), Docker image or other be available to parties
participating in the contracts using them.

All RPC APIs in this specification follow JSON RPC conventions:
https://www.jsonrpc.org/specification.

JSON RPC payloads include the following common features applicable to all APIs :

jsonrpc must be 2.0 as defined in [JSON-RPC-API]

id is an id used to link request and response as described in [JSON-RPC-API]

All errors and status are returned in the following generic JSON RPC error format.

{
 "jsonrpc": "2.0", // as per JSON RPC spec
 "id": <integer>, // the same as in input
 "error": { // as per JSON RPC spec

 "code": <integer,
 "message": <string>,
 "data": <implementation specific data>

 }
}

jsonrpc must be 2.0 per JSON RPC specification

id is the same id that was sent in a corresponding request

4. RPC Encoding Conventions §

4.1 Error and Status Formats §

4.1.1 Parameters §

10 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation
https://www.jsonrpc.org/specification
chaals

error is a collection of parameters as per JSON RPC specification, defines an error or status,
includes

code is an integer number defining an error or state. Supported values:

Values from -32768 to -32000 are reserved for pre-defined errors in JSON RPC spec

0 – success

1 – unknown error

2 – invalid parameter format or value

3 – access denied

4 – invalid signature

message is a string describing the errors and corresponding to code value

data contains additional details about the error, format is error and implementation specific

The APIs also support JSON Web Token [RFC7519] as an option for the signatures.

Header:

{
 "alg": "RSA" or "secp256k1"
 "type": "JWT"
}

Payload:

{
 "apiSpecific": <string>
 //...
}

Signature:

RSA or SECP256K1(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 secret)

Where secret is a random nonce.

4.2 JWT Signature Support §

11 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

The parameter descriptions for APIs in this specification will specify API-dependent Payload
object only.

This chapter defines interfaces for registering Workers:

Smart contract API that registers generic Worker information not specific to a Worker type

JSON RPC API for registering generic Worker information

JSON RPC API for registering type specific, e.g. TEE, MPC etc. Worker information

Refer to section Implementation Notes for a list of supported proof data types and related details.

APIs in this section are to be implemented as an Ethereum smart contract referred to as Worker
Registry.

Registering a New Worker

This function registers a Worker and is invoked from the Ethereum address of the Trusted Resource
Service using the web3 JSON-RPC Ethereum transaction model with the digital signature
associated to the sending Ethereum address.

An Implementation specific model will be used to enforce authorization policies on who can make
this call.

Inputs

workerID is a DID or a unique id (hexadecimal string) such as an Ethereum public key

workerType defines Worker type, currently defined types are: -

1. indicates "TEE" or Trusted Execution Environment

2. indicates "MPC" or Multi-Party Compute

3. indicates "ZK" or Zero Knowledge

For associated APIs for each type please refer to Appendix A.

4. indicates "OFF-CHAIN-REGISTRY". This record in the Worker Registry is not a Worker, but
a record that defines how to connect to an Off-chain Worker Registry to discover Workers. In
this case workerTypeDataURI defines a URI that can be used to access the Off-chain

5. Worker Registry §

5.1 Worker Registry Smart Contract API §

12 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-implementation-notes

Worker Registry using JSON RPC messages defined in section Off-chain Worker Registry
JSON RPC API

workerTypeDataURI defines a URI from where additional Worker information can be retrieved.
This URI provides data in a format that corresponds to the Worker type. Supported types:

TEE - section "TEE workerTypeData" in Appendix A defines for retrieving identification and
attestation payload for TEE worker types.

MPC - section "MPC workerTypeData" in Appendix A defines identification and attestation
payload for MPC worker types.

ZK - section "ZK workerTypeData" in Appendix A defines identification and attestation
payload for ZK worker types.

OFF-CHAIN-REGISTRY – section "Off-Chain Worker Registry JSON RPC API" defines an
API for retrieving generic Worker information from an Off-chain Worker Registry. In this case
workerTypeDataUri redirects the client to an Off-chain Worker Registry.

DDOURI defines a URI used only if a Worker ID is a DID

organizationID is an optional parameter. Organization that hosts the Worker, e.g. a bank in the
consortium or anonymous entity.

applicationTypeId is an optional parameter that defines application types supported by the
Worker.

function workerRegister(byte32 workerID,
 uint8 workerType,
 string workerTypeDataUri,
 bytes32 organizationID,
 bytes32[] applicationTypeId) public

Initiating Worker lookup

This function retrieves a list of Worker ids that match input parameter.

The Worker must match to all input parameters (AND mode) to be included in the list.

If the list is too big to fit into a single response (maximum number of entries in a single response is
implementation specific), the smart contract should return the first batch of the results and provide
a lookupTag that can be used by the caller to retrieve the next batch by calling workerLookUpNext.

All input parameters are optional and can be provided in any combination to select Workers.

Inputs

workerType is a characteristic of Workers for which you may wish to search

13 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

organizationId is an id of an organization that can be used to search for one or more Workers
that belong to this organization

applicationTypeId is an application type that has to be supported by the Worker

Outputs

totalCount is a total number of entries matching a specified lookup criteria. If this number is
bigger than size of ids array, the caller should use lookupTag to call workerLookUpNext to retrieve
the rest of the ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
Worker ids that can be retrieved by calling function workerLookUpNext with this tag as an input
parameter.

ids is an array of the Worker ids that match the input parameters

function workerLookUp(
 uint8 workerType,
 bytes32 organizationId,
 bytes32 applicationTypeId) public view
returns(
 int totalCount,
 string LookupTag,
 bytes32[] ids)

Getting Additional Worker Lookup Results

This function is called to retrieve additional results of the Worker lookup initiated by
workerLookUp call.

Inputs

workerType is a characteristic of Workers for which you may wish to search

organizationId is an organization to which a Worker belongs

applicationTypeId is an application type that has to be supported by the Worker lookupTag is
returned by a previous call to either this function or to workerLookUp.

Outputs

totalCount is a total number of entries matching this lookup criteria. If this number is bigger
than numbers of ids returned so far, the caller should use lookupTag to call workerLookUpNext
to retrieve the rest of the ids.

14 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

newLookupTag is an optional parameter. If it is returned, it means that there are more matching
Worker ids that can be retrieved by calling this function again with this tag as an input parameter.

ids is an array of the Worker ids that match the input parameters

function workerLookUpNext(
 uint8 workerType,
 bytes32 organizationId,
 bytes32 applicationTypeId,
 string lookUpTag) public view
 returns(

int totalCount,
string newLookupTag,
bytes32[] ids)

Retrieving Worker Information

This function retrieves information for the Worker and it can be called from any authorized public
key (Ethereum address) or DID.

Inputs

workerId is id of a Worker to retrieve

Outputs

The same as input parameters to the corresponding call to workerRegister.

function workerRetrieve(byte32 workerId) public view
 returns (

uint8 workerType,
string workerTypeDataUri,
bytes32 organizationId,
bytes32[] applicationTypeId)

These are the JSON RPC version of "Worker Registry Smart Contract API". All messages follow a
request-response pattern and are completed synchronously during the same session.

Errors and status are returned using a generic JSON RPC error.

Register Worker JSON Payload

This message registers a Worker. It doesn’t have a specific response payload; instead a generic
error response payload is sent back as a response.

5.1.1 Off-Chain Worker Registry JSON RPC API §

15 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

{
 "jsonrpc": "2.0",
 "method": "WorkerRegister",
 "id": <integer>,
 "params": {

 "workerId":<hex string>,
 "workerType":<uint>,
 "workerTypeDataUri":<hex string>,
 "organizationId":<hex string>,
 "applicationTypeId": [<one or more hex strings>]

 }
}

method must be WorkerRegister,

params is a collection of the request parameters. Refer to section Registering a New Worker for
description of the parameters

Worker Lookup JSON Request Payload

This message registers initiates a Worker lookup in the registry. Its response is defined in section
Worker Lookup JSON Response Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkerLookUp",
 "id": <integer>,
 "params": {

 "workerType": <uint>,
 "organizationId": <hex string>,
 "applicationTypeId": [<one or more hex strings>]

 }
}

method must be WorkerLookUp,

params is a collection of the request parameters. Refer to section Initiating Worker Lookup
for description of the parameters

Worker Lookup Next JSON Request Payload

This message continues retrieving results initiated by a previous WorkerLookUp message. Its
response is defined in section Worker Lookup JSON Response Payload.

16 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/offchain.html
file:///Users/chaals/Documents/GitHub/trusted-computing/docs/offchain.html

{
 "jsonrpc": "2.0",
 "method": "WorkerLookUpNext",
 "id": <integer>,
 "params": {

 "workerType": <uint>,
 "organizationId": <hex string>,
 "applicationTypeId": [<one or more hex strings>]
 "lookUpTag": <string>

 }
}

method must be WorkerLookUpNext,

params is a collection of the request parameters. Refer to section Getting Additional Worker
Lookup Results for description of the parameters

Worker Lookup JSON Response Payload This payload is sent back to a Requestor in response to
the request is defined in sections Worker Lookup JSON Request Payload and Worker Lookup Next
JSON Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

 "totalCount":<integer,
 "lookupTag":<string,
 ids:[<one or more hex strings>]

 }
}

result is a collection of the response specific parameters. Refer to the output parameters in section
Initiating Worker lookup for the description of elements in this objects.

Retrieve Worker JSON Request Payload

This message retrieves a Worker by its ID. Its response is defined in section Retrieve Worker JSON
Response Payload.

17 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

{
 "jsonrpc": "2.0",
 "method": "WorkerRetrieve"
 "id": <integer>,
 "params": {

 "workerId": <hex string>
 }

}

method must be WorkerRetrieve,

params is a collection of the request parameters. Refer to section Retrieving Worker Information
for description of parameters

Retrieve Worker JSON Response Payload

This payload is sent back to a Requestor in response to the request defined in section Retrieve
Worker JSON Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

 "workerType":<uint>,
 "workerTypeDataUri":<hex string>,
 "organizationId":<<ex string>,
 "applicationTypeId": [<one or more hex strings>]

 }
}

result is a collection of the response specific parameters. Refer to the output parameters in
section Retrieving Worker information for the description of elements in this objects.

workerTypeDataURI defines a URI from where detailed Worker type specification information
can be retrieved.

Direct Model: JSON RPC Work Order invocation API over network

Proxy Model: Work order invocation using Ethereum (proxy) smart contract

6. Work Orders §

6.1 Direct Model Invocation §

18 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

This section defines a mechanism for executing Work Orders over network JSON RPC API outside
of the blockchain.

This API can be used in several modes:

Synchronous request-response when the exchange of Work Order request and completion
result happens in the same HTTP session. Synchronous mode is for Work Orders that don’t
require long time to execute.

Result pulling mode. In this mode the ÐApp disconnects after submitting a Work Order
request and then periodically polls the JSON endpoint for the Work Order result

Asynchronous mode. In this mode ÐApp provides a URI for receiving the Work Order result
as a part of the Work Order request. ÐApp disconnects after submitting the Work Order. Upon
the Work Order completion, the Worker submits the Work Order result to the provided URI.

Notification mode. In this mode ÐApp provides a URI for receiving a notification about the
Work Order completion as part of the Work Order request. ÐApp disconnects after submitting
the Work Order. Upon the Work Order completion, the Worker sends an event to the URI
provided in the Work Order request. Upon receiving the event, the client retrieves the Work
Order result from the JSON endpoint.

Work Order Request Payload

First, Requestor sends a Work Order Request payload in a JSON-RPC based format defined below.

{
 "jsonrpc": "2.0",
 "method": "WorkOrderSubmit",
 "id": <integer>,
 "params": {

"responseTimeoutMSecs": <integer>,
"requestorSignature": <hex string[]>,
"requestorGeneratedNonce": <string>
"workerId": <hex string>,
"workOrderId": <hex string>,
"requestorId": <hex string>,
"resultUri": <string>,
"notifyUri": <string>,
"Data": [

<BASE64 string> or <object>
]

 }
}

Parameters

method is set to WorkOrderSubmit
19 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

params is a collection of parameters as per JSON RPC specification. The parameters defined
below

responseTimeout is a maximum timeout in milliseconds that the caller will wait for the response

requestorSignature is an optional parameter.

If the requestor decides to not sign this message, both requestorGeneratedNonce and
requestorSignature are blank.

If the requestor decides to sign the message and workOrderPayloadFormats is set to JSON-
RPC-JWT (refer to section Register Worker JSON Payload), the signature is in JSON Web
Tokens (JWT) format and provided in requestorGeneratedNonce parameter below.
requestorSignature is blank in this case.

If the requestor decides to sign the message and workOrderPayloadFormats is set to JSON-
RPC, the digital signature is generated by the Requestor signing a SHA256 hash of the message
containing requestorGeneratedNonce, workOrderId, workerId, requestorID, and its
dataHash followed by EncryptedDataEncryptionKey for each input data item. The signature
has the following array format

[signed_message, SHA256_message, curve_type]

where curve_type is either RSA or secp256k1. The Worker Service will verify this signature.

requestorGeneratedNonce is the hash of a random number generated by the Requestor as a
part of signature above. It is an optional parameter, if the requestorSignature is blank. It is
submitted either directly as a plain string or as a JWT with Payload set as follows:

Payload:

{
 "workOrderId": <string>
 "WorkerId": <string>
 "requestorId": <string>

}

workerId is either the worker public key or its DID used during registration and will be used to
sign the work order results.

workOrderId is an id assigned to the Work Order by the Requestor and can be registered using
the Work Order Receipts API

requestorId is either the Requestor’s public key or its DID

20 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

resultUri is an optional parameter. If it is specified, the WorkerService should submit the Work
Order result to this URI. See section Work Order Result Submission.

notifyUri is an optional parameter. If it is specified, the WorkerService should send an event to
this URI upon the Work Order completion. See section Work Order Result Submission.

Data contains either a JWT of the specified data or an array of one or more Work Order inputs, e.g.
state, message containing input parameters.

If workOrderPayloadFormats is set to JSON-RPC-JWT (refer to section Register Worker JSON
Payload), it is a JWT with Payload set as follows:

Payload:

{
 "Type": <string>,
 "dataHash": <hex string>,
 "inputDataURI": <string>,
 "outputDataURI": <string>,
 "BLOB": <BASE64 string>,
 "EncryptedDataEncryptionKey": <hex string>,
}

If workOrderPayloadFormats is set to JSON-RPC- (refer to section Register Worker JSON
Payload), it is an array:

{
 "Type": <string>,
 "dataHash": <hex string>,
 "inputDataURI": <string>,
 "outputDataURI": <string>,
 "BLOB": <BASE64 string>,
 "EncryptedDataEncryptionKey": <hex string>,
}

Type defines an input data type. Supported data types are:

code indicates that this Data items defines the application code to execute. It can be an id of
the pre-built application in case of fully precompiled static Worker application. Alternatively,
it can be a script, e.g. Solidity, that is loaded into the Workerat the runtime if the Worker has a
corresponding built-in script interpreter

message contains input parameters

state is a persistent state persevered across relevant Work Order executions by the Requestor

21 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

dataset additional data (like reference database) used by the application

Custom data types that should start with tilde "~".

dataHash is a SHA256 hash of the data

inputDataURI indicates how the Work Order input data are provided for execution. It can be
@@

If inputDataURI is not present, null, or a null string, this is output data only

If it is set to #inline, than the input data are sent inline in the BLOB parameter

Otherwise, it contains a URL from where Worker Service must download the input data

outputDataURI defines how the Work Order output data should be returned to the
participant.

If outputDataURI is not present, null, or a null string, this is input data only

If it is set to #inline, than the output data will be sent inline in the BLOB parameter in Work
Order Result Payload.

Otherwise, it contains a URL to where Worker Service must upload the output data

BLOB is an optional parameter that contains input data if inputDataURI is set to #inline

EncryptedDataEncryptionKey represents a symmetric key used to encrypt this item input
and/or output data. The key itself is sent in the encrypted form. It is encrypted using the
Worker encryption key

After a Work Order request is received, the Worker Service can respond in one of three ways:

Complete a (short running) Work Order and returns the result

Return an error if the Work Order was rejected or its execution failed

Schedule a Work Order to be executed later and return a corresponding status

Work Order Result Payload

If a submitted Work Order is completed, its Work Order Result is returned in the following
format.

22 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"workOrderId": <hex string>,
"workerId": <hex string>,
"requestorId": <hex string>,
"workerSignature": <hex string[]>,
"workerGeneratedNonce": <string>,
"Data": [

<BASE64 string> or <object>
]

 }
}

Parameters

result is a collection of parameters as per JSON RPC specification. The parameters defined
below are

workOrderId is a Work Order sent in the Work Order request

workerId is id of the worker who completed the work order

requestorId is id of the requestor who submitted the work order

workerSignature is an optional parameter.

If the worker decides to not sign this message, both workerSignatureNonce and
workerSignature are blank.

If the worker decides to sign the message and workOrderPayloadFormats is set to JSON-RPC-
JWT (refer to section Register Worker JSON Payload), the signature is in JSON Web Tokens (JWT)
format and provided in workerSignatureNonce parameter below. workerSignature is blank
in this case.

If the worker decides to sign the message and workOrderPayloadFormats is set to JSON-RPC,
the digital signature is generated by the Requestor signing a SHA256 hash of the message
containing workerSignatureNonce, workOrderId, workerId, requestorId, and dataHash
followed by EncryptedDataEncryptionKey for each input data item (from the corresponding
request message) and for each output data item (in this message). The signature has the following
array format

[signed_message, SHA256_message, curve_type]

where curve_type is either RSA or secp256k1. The Worker Service will verify this signature.

23 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

workerSignatureNonce is the requestorGeneratedNonce from the submitted work order. It
is an optional parameter, if the workerSignature is blank. It is submitted either directly as an
insecure string or as a JWT with Payload set as follows:

Payload:

{
 "workOrderId": <string>
 "WorkerId": <string>
 "requestorId": <string>
 "dataHash": <hex string>

}

Data is either a JWT or an array of one or more Work Order outputs, e.g. state, result

If workOrderPayloadFormats is set to JSON-RPC-JWT (refer to section Register Worker JSON
Payload), it is a JWT with Payload set as follows:

Payload:

{
 "Type": <string>,
 "dataHash": <hex string>,
 "outputDataURI": <string>,
 "BLOB": <BASE64 string>,
 "EncryptedDataEncryptionKey"

}

If workOrderPayloadFormats is set to JSON-RPC (refer to section Register Worker JSON
Payload) , it is an array:

{
 "Type": <string>,
 "dataHash": <hex string>,
 "outputDataURI": <string>,
 "BLOB": <BASE64 string>,
 "EncryptedDataEncryptionKey"

}

Type defines an output data type. Supported data types are:

result contains return value(s) from the Work Order execution

state is a persistent state to be persevered across repeated invocation associated with the
same Work Order executions by the Requestor

24 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

dataset additional data (like reference database) used by the application

Custom data types that should start with tilde "~".

dataHash is a SHA256 hash of the data element outputDataURI is the same as provided in
a corresponding Work Order request.

BLOB is an optional parameter that contains output data if outputDataURI is set to
#inline". The data are encrypted with EncryptedWorkOrderKey from the Work Order
request and then BASE64 encoded.

Work Order Status or Error Response Payload

If the work request fails or rejected or scheduled for the execution later or its execution
requires long time, the Work Order Error Response payload is sent in the following format
defined in section "RPC Encoding Conventions".

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "error": {

"code": "integer",
"message": <string>,
"data": {

"workOrderId": <hex string>
}

 }
}

Parameters

code is an integer number defining an error or Work Order state. Supported values:

Values from -32768 to -32000 are reserved for pre-defined errors in JSON RPC spec

5 means that the Work Order status "pending" – scheduled to be executed, but not started yet

6 means that the Work Order status "processing" – its execution started, but it is completed yet

Values from 7 to 999 are reserved

All other values can be used by the Worker Service (a.k.a. implementation specific)

data contains additional details about the error that includes

workOrderId is a Work Order id as a hexadecimal string

Work Order Result Pull Payload

25 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

If a Requestor receives a response stating that its Work Order state is "scheduled" or
"processing", it should pull the Worker Service later to get the result. The Requestor has two
pulling options

*Poll the Worker Service periodically until the Work Order is completed successfully or in
error *Wait for the Work Order Receipt complete event and retrieve a final result. Refer to
Work Order Receipts Handling for more details.

In either case the Work Order Result Pull request must follow the format below

{
 "jsonrpc": "2.0",
 "method": "WorkOrderGetResult",
 "id": <integer>,
 "params": {

 "workOrderId": <hex string>,
 "requestorSignature": <hex string>,
 "requestorGeneratedNonce": <hex string>

 }
}

Parameters

method is set to WorkOrderGetResult

params is a collection of parameters as per JSON RPC specification. The parameters defined
below

workOrderId is a Work Order id that was sent in the corresponding WorkOrderSubmit request

requestorSignature is an optional parameter.

If the requestor decides to not sign this message, both requestorGeneratedNonce and
requestorSignature are blank.

If the requestor decides to sign the message and workOrderPayloadFormats is set to JSON-
RPC-JWT (refer to section Register Worker JSON Payload), the signature is in JSON Web Tokens
(JWT) format and provided in requestorGeneratedNonce parameter below.
requestorSignature is blank in this case.

If the worker decides to sign the message and workOrderPayloadFormats is set to JSON-RPC, the
digital signature is generated by the Requestor signing a SHA256 hash of the message containing
requestorGeneratedNonce and workOrderId. The signature has the following array format

[signed_message, SHA256_message, curve_type]

where curve_type is either RSA or secp256k1. The Worker Service will verify this signature.
26 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-receipt-handling

requestorGeneratedNonce is the original requestorGeneratedNonce, if one was created. If not,
it is blank. It is submitted either directly as an insecure string or as a JWT with Payload set as
follows:

Payload:

{
 "workOrderId": <string>
}

Work Order Result Submission

If the client provides resultUri in the Work Order request payload, the Worker will send the
Work Order execution result to provided URI.

In this case the Worker submits the result in the same format as defined in section Work Order
Result Payload. The client responds with a payload as defined in section Work Order Status or
Error Response Payload.

Work Order Completion Event

If the client provides notifyUri in the Work Order request payload, the Worker sends an event to
the Requestor upon the Work Order completion irrespective of whether the Work Order was
completed successfully or not

The event payload format:

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"workOrderId": <hex string>
 }
}

Parameters

result is a collection of parameters as per JSON RPC specification. The parameters defined
below are

workOrderId is a Work Order sent in the Work Order request

Upon receiving this event, the client will pull the Work Order result as defined in sections Work
Order Result Pull Payload and Work Order Result Payload above

27 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

chaals
©2018 Enterprise Ethereum Alliance inc. All Rights Reserved

�

This section defines a Work Order execution mechanism using Invocation proxy Ethereum smart
contract created by the WorkerService for its associated Worker(s). Its address is available in the
Worker Service Registry.

Submitting a New Work Order

This function creates a new Work Order. It is called by a ÐApp or an enterprise application smart
contract from the Requestor’s address. The Proxy Smart Contract is called by a ÐApp or an
enterprise application from the Requestor’s public key or DID.

This function must be called from the same Requestor public key that is included in the request
either directly or through the DID.

As a side effect this function may create a Work Order Receipt for the Work Order.

This function emits event workOrderNew.

This function uses an implicit parameter transaction sender that is included in the event
workOrderNew and returned by workOrderGetRequest.

Inputs

workOrderId should match the corresponding field in the jsonRequest.

workerId should match the corresponding field in the jsonRequest.

requestorId is a public key or DID. It should match the corresponding field in the jsonRequest.

workOrderRequest is a Work Order request data in one of the formats defined in section
Registering a New Worker.

If the Work Order payload format for the Worker is set to JSON-RPC, the details of the
workOrderRequest are defined in section Direct Model Invocation.

If the Work Order payload format for the Worker is set to JSON-RPC-JWT and to minimize smart
contract storage, an inputDataURI is provided in the Work Order Request Data, and since we
want to provide maximum security, the workOrderRequest field is a JWT with Payload set as
follows:

Payload:

{
 "inputDataURI": <string>

}

6.2 Proxy Model Invocation §

28 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

chaals
©2018 Enterprise Ethereum Alliance inc. All Rights Reserved

�

function workOrderSubmit(
 bytes32 workOrderId,
 bytes32 workerId,
 bytes32 requestorId,
 string workOrderRequest) public

New Work Order Event

This event is emitted by workOrderSubmit function; workOrderId is the submitted Work Order
id.

This event is intended for the Worker(s) that is supposed to execute the Work Order.

Parameters

version is a version of the API, e.g. value 0x01020381 corresponds to version "1.2.3.129"

workOrderId is the submitted Work Order id

workerId – id of the Worker that supposed to process the data (public key or DID)

senderAddress is an Ethereum address from which a corresponding workOrderSubmit call
was done

workOrderRequest is the submitted Work Order request data as defined above

event workOrderNew (byte4 version,
 bytes32 workOrderId,
 bytes32 workerId,
 address senderAddress,
 string workOrderRequest)

Completing a Work Order

This function is called by the WorkerService to complete a Work Order successfully or in error.

This function can be executed only from the WorkerService address that deployed this contract.

It emits event workOrderDone.

Inputs

workOrderId is an id of the Work Order, the same as provided during call to workOrderSubmit.

workOrderResponse is a Work Order response data in one of the formats defined in section
Registering a New Worker.

29 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

chaals
©2018 Enterprise Ethereum Alliance inc. All Rights Reserved

�

If the Work Order payload format for the Worker is set to JSON-RPC, the details of the
workOrderRequest are defined in section Direct Model Invocation.

If the Work Order payload format for the Worker is set to JSON-RPC-JWT and to minimize smart
contract storage, a workOrderRequestRedirectURI is provided in the Work Order Request
Data, and since we want to provide maximum security, the workOrderRequest field is a JWT
with Payload set as follows:

Payload:

{
 "workOrderRequestRedirectURI": <string>
}

Work Order Done Event

This event is emitted by workOrderComplete where workOrderId is the completed Work Order
id.

This event is intended for the Requestor who submitted the Work Order.

Parameters

version is a version of the API, e.g. value 0x01020381 corresponds to version "1.2.3.129"

workOrderId is the completed Work Order Id

requestorId is an Id of the Requestor that submitted the Work Order

workOrderResponse is Work Order response data as defined above.

event workOrderDone(bytes4 version,
 bytes32 workOrderId,
 bytes32 requestorId,
 string workOrderResponse)

Retrieving Work Order Request Information

This is an optional function that returns Work Order request info.

It is recommended to allow this function to be called only from the WorkerService address that
instantiated this contract.

Inputs

function workOrderComplete(bytes32 workOrderId, string workOrderResponse)

30 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

workOrderId is an id of the Work Order to retrieve request for Outputs

workOrderRequest is the Work Order request data submitted during workOrderSubmit call.

senderAddress is an Ethereum address from which a corresponding workOrderSubmit call
was made

function workOrderGetRequest(bytes32 workOrderId) public view
 returns (string workOrderRequest,

 address senderAddress)

Retrieving Work Order Response Information

This is an optional function that returns a Work Order response. It is recommended to allow this
function to be called only from the address of the Requestor who submitted this Work Order.

Inputs

workOrderId is an id of the Work Order to retrieve response for Outputs

workOrderResponse is a Work Order response data provided during workOrderComplete call.

requestorId is the public key or the DID of the Requestor that submitted the Work Order

workerId is the public key used by the Worker to sign the Work Order results or the DID

function workOrderGetResult(bytes32 workOrderId) public view
 returns(

 string workOrderResponse,
 bytes32 requestorId,
 bytes32 workerId)

This chapter defines two modes for Work Order verification defined in this specification:

Smart contract mode when the Work Order Receipts are managed by a Work Order Receipts
smart contract. This mode is applicable when workOrderPayloadFormats is set to JSON-RPC.
Refer to section Register Worker JSON Payload.

Direct mode when the Work Order Receipts are managed by off-chain using Work Order
Receipts JSON RPC API. This mode is applicable when workOrderPayloadFormats is set
to JSON-RPC or JSON-RPC-JWT. Refer to section Register Worker JSON Payload.

7. Work Order Receipts §

31 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

This API provides following capabilities:

Creating Work Order receipt either explicitly by the Requestor or on behalf of the Requestor
by the Work Order Invocation Proxy smart contract.

Updating Work Order by the Worker that executed the Work Order.

Retrieving a Work Order receipt information.

Looking up Work Order receipts by Id of either Requestor or Worker or a combination of
them. Work Order receipt status also can be used to refine the lookup.

It should be noted that a Receipt includes a signature generated by a Worker. The ÐApp may verify
it off chain, but an application smart contract has two options

Precompiled Receipts Validation smart contract

Go to an authorized Receipts Validation Worker

Choice and implementation details of Receipt Validation are left to implementations of the API.

Creating a Work Order Receipt

This function is implemented by Work Order Receipts smart contract and is called by a Requestor
or on behalf of a Requestor to create a Work Order Receipt in the "submitted" state.

The sender address is an implicit parameter that is saved as a part of the receipt..

Inputs

workerServiceId is the Ethereum public key or DID of the Worker (WorkerService) to
execute the Work Order

workerId is the public key used by the Worker to sign the Work Order results or the DID

requestorId is a public key of the requestor

workOrderId is an id of the Work Order

function workOrderReceiptCreate(bytes32 workerServiceId,
 bytes32 workerId,
 bytes32 requestorId,
 bytes32 workOrderId) public

Completing a Work Order Receipt

Proxy Model Receipt Handling §

32 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation

This API is implemented by a Work Order Receipts smart contract and is called by the Worker to
update the Receipt upon completing the Work Order.

It must be called from the WorkerService public key or DID passed during the receipt creation.

Inputs

workOrderId is an id of the Work Order

requestorId is the public key or the DID of the Requestor that submitted the Work Order, and
must match the public key or the DID of the sender who created the Work Order receipt

workerId is an id of the worker that completed the work order

inputDataHashes* is an array of hashes of input data

outputDataHashes* is an array of hashes of output data

inputEncryptionKeys* is an array of inputs encryption keys

outputEncryptionKeys* is an array of outputs encryption keys

workerNonce* is the requestorGeneratedNonce

workerSignature is a signature generated by the worker. All parameters above are included in
the signature. Refer to the section Direct Mode Invocation for details.

status is a number indicating the Work Order execution status. It is not included in the signature.
One of

0 – successfully completed

1 – the Work Order was rejected before the execution started

2 – the Work Order execution failed

optional additional status values indicating a failure

Refer to Work Orders for more details

33 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

function workOrderReceiptComplete(bytes32 workOrderId,
 bytes32 requestorId,
 bytes32 workerId,
 bytes32[] inputDataHashes,
 bytes32[] outputDataHashes,
 bytes32[] inputEncryptionKeys,
 bytes32[] outputEncryptionKeys,
 bytes32 workerNonce,
 bytes workerSignature,
 uint8 status) public

Retrieving a Work Order Receipt

Authorized entities can retrieve a Work Order receipt using this function

Inputs

workOrderId is an id of the Work Order to retrieve

Outputs

receiptCreatorAddress is an address used to make a corresponding
workOrderReceiptCreate call

For other parameter definitions refer to workOrderReceiptComplete function above.

function workOrderReceiptRetreive(bytes32 workOrderId) public view
 returns(address receiptCreatorAddress,

bytes32 requestorId,
bytes32[] inputDataHashes,
bytes32[] outputDataHashes,
bytes32[] inputEncryptionKeys,
bytes32[] outputEncryptionKeys,
bytes32 workerNonce,
bytes workerSignature,
uint8 status)

Work Order Receipt Completed Event

In order to minimize storage utilization the smart contract implementation should maintain a
relatively small number of the receipts in the storage, e.g. only receipts for Work Orders that have
not completed.

The smart contract is should use Ethereum log for completed receipts.

An event below is emitted by function workOrderReceiptComplete.

34 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

event workOrderReceiptCompleted(
 bytes32 workOrderId,
 byte32 workerId,
 byte32 requestorId,
 byte32[] inputDataHashes,
 byte32[] outputDataHashes,
 byte32 workerNonce,
 bytes workerSignature,
 uint8 status)

Work Order Receipt Lookup

This function retrieves a list of receipt Ids filtered by one or more input parameters. If more than
one input parameters is provided, a receipt must match all parameters to be included in the list
(AND-op).

Inputs

workerServiceId is the Ethereum public key or DID of the Worker (WorkerService) to
execute the Work Order

workerId is the public key used by the Worker to sign the Work Order results or the DID

requestorId is the public key or the DID of the Requestor that submitted the Work Order, and
must match the public key or the DID of the sender who created the Work Order receipt

status is a string indicating the Work Order execution status. It is not included in the signature.
Refer to workOrderReceiptComplete for the list of supported values.

Outputs

totalCount is a total number of receipts matching the lookup criteria. If this number is bigger
than size of ids array, the caller should use lookupTag to call workOrderReceiptLookUpNext to
retrieve the rest of ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
receipts that can be retrieved by calling workOrderReceiptLookUpNext and with this tag as an
input parameter.

ids is an array of the Work Order receipt ids that match the input parameters

35 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

function workOrderReceiptLookUp(bytes32 workerServiceId,
 bytes32 workerId,
 bytes32 requestorId,
 uint8 status) public view
 returns(

int totalCount,
string lookUpTag, //OPTIONAL
bytes32[] ids)

Work Order Receipt Lookup Next

This function is called to retrieve additional results of the Work Order receipt lookup initiated by
workOrderReceiptLookUp call.

Inputs

workerServiceId is the Ethereum public key or DID of the Worker (WorkerService) to
execute the Work Order

workerId is the public key used by the Worker to sign the Work Order results or the DID

requestorId is the public key or the DID of the Requestor that submitted the Work Order, and
must match the public key or the DID of the sender who created the Work Order receipt

status is a string indicating the Work Order execution status. It is not included in the signature.
Refer to workOrderReceiptComplete for the list of supported values.

lastLookupTag is returned by a previous call to either this function or to
workOrderReceiptLookUp.

Outputs

totalCount is a total number of receipts matching the lookup criteria.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
receipts that can be retrieved by calling this function again and with this tag as an input parameter.

ids is an array of the Work Order receipt ids that match the input criteria from corresponding call
to workOrderReceiptLookUp.

36 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

function workOrderReceiptLookUpNext(byte32 workerServiceId,
 bytes32 workerId,
 bytes32 requestorId,
 uint8 status,
 string lastLookUpTag) public view
 returns(

 int totalCount,
 string lookUpTag,
 bytes32[] ids)

Work Order Receipt management can be done off-chain by a dedicated service or by a
workerService itself. This is expected to help scalability.

This section defines Work Order Receipts JSON RPC API to support this case. Requestors and
Workers invoke this API without relying on blockchain smart contract, hence this is called the
"direct model".

This API assumes a synchronous request-response model when the result is returned during the
same HTTP session. Asynchronous mode is not defined in this revision, but may be added later.

Status and Error Payload Structure

All error responses and status are reported in the format defined in the section "RPC Encoding
Conventions". This format is also used to report a successful request if the request doesn’t assume
any return values, e.g. creating a Work Order receipt.

New Work Order Receipt Request Payload

This request is sent by a Requestor to create a new Work Order Receipt. This request does not have
a specific corresponding response payload hence the error and status payload used as response.

7.1 Direct Model Receipt Handling §

37 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptCreate",
 "id": <integer>,
 "params": {

"workOrderId": <hexadecimal string>
"workerServiceId": <hexadecimal string>,
"workerId": <hexadecimal string>,
"requestorId":< <hexadecimal string>,
"requestorGeneratedNonce": <hexadecimal string>, //OPTIONAL
"requestorSignature":< <hexadecimal string>, //OPTIONAL

"inputData": [
<ether base64 string or an array element>

]
 }
}

method must be WorkOrderReceiptCreate,

params is a collection of the request parameters below

workOrderId is an id assigned to the Work Order by the Requestor

workerServiceId is an Ethereum public key or DID of the Worker (WorkerService) to which
a Work Order submitted

workerId is either the worker public key or its DID used during registration. In either case,
worker id will be used to sign the work order results

requestorId is either the Requestor’s public key or its DID

requestorSignature is an optional parameter.

If the requestor decides to not sign this message, both requestorGeneratedNonce and
requestorSignature are blank.

If the requestor decides to sign the message and workOrderPayloadFormats is set to JSON-
RPC-JWT (refer to section Register Worker JSON Payload), the signature is in JSON Web Tokens
(JWT) format and provided in requestorGeneratedNonce parameter below.
requestorSignature is blank in this case.

If the requestor decides to sign the message and workOrderPayloadFormats is set to JSON-
RPC, the digital signature is generated by the Requestor signing a SHA256 hash of the message
containing requestorGeneratedNonce, workOrderId, workerId, requestorID, and
dataHash and encryptedDataEncryptionKey values for all input data. The signature has the
following array format

38 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[signed_message, SHA256_message, curve_type]

where curve_type is either RSA or secp256k1. The service will verify this signature.

requestorGeneratedNonce is the hash of a random number generated by the Requestor as a
part of signature above. It is an optional parameter, if the requestorSignature is blank. It is
submitted either directly as an insecure string or as a JWT with Payload set as follows:

Payload:

{
 "workOrderId": <string>
 "workerId": <string>
 "requestorID": <string>
 "dataHash": <hex string>

}

Data contains either a JWT of the specified data or an array of one or more Work Order inputs, e.g.
state, message containing input parameters.

If workOrderPayloadFormats is set to JSON-RPC-JWT (refer to section Register Worker JSON
Payload), it is a JWT with Payload set as follows:

Payload:

{
 "dataHash": <hex string>,
 "encryptedDataEncryptionKey": <hex string>

}

If workOrderPayloadFormats is set to JSON-RPC (refer to section Register Worker JSON
Payload), it is an array:

{
 "dataHash": <hex string>,
 "encryptedDataEncryptionKey": <hex string>

}

dataHash is a SHA256 hash of the data

encryptedDataEncryptionKey represents a symmetric key used to encrypt this item input
and/or output data. The key itself is sent in the encrypted form. It is encrypted using the Worker
encryption key

After a Work Order request is received, the Worker Service can respond in one of three ways:

39 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Complete a (short running) Work Order and return the result

Return an error if the Work Order was rejected or its execution failed

Schedule a Work Order to be executed later and return a corresponding status

Work Order Receipt Update Request Payload

This request is sent by a Worker that completed the Work Order to update its Receipt. This request
doesn’t have a specific corresponding response payload - a generic error response is returned.

{
 "jsonrpc": "2.0",
 "method": " WorkOrderReceiptUpdate",
 "id": <integer>,
 "params": {

 "workOrderId": <hexadecimal string>,
 "requestorId": <hexadecimal string>,
 "inputDataHashes":[<hexadecimal strings>],
 "outputDataHashes":[<hexadecimal strings>],
 "workerNonce": <hexadecimal string>,
 "workerSignature": <hexadecimal string>,
 "status": <number>

 }
}

method must be WorkOrderReceiptUpdate,

params is a collection of the request parameters below

workOrderId is an id of the Work Order

requestorId is either the Requestor’s public key or its DID

inputDataHashes is an array of hashes of input data

outputDataHashes* is an array of hashes of output data

workerNonce* is the requestorGeneratedNonce

workerSignature is a signature generated by the worker. All parameters above are included in
the signature. Refer to the section Direct Mode Invocation for details.

status is a number indicating the Work Order execution status. It is not included in the signature.
Refer to section Completing a Work Order Receipt for details.

Refer to Work Orders for more details

Work Order Receipt Retrieval Request Payload

40 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

This request is sent by a Requestor to retrieve a Work Order Receipt id. The response to this
request is defined in section Work Order Receipt Retrieval Response Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptRetrieve",
 "id": <integer>,
 "params": {

"workOrderId": <hexadecimal string>
 }
}

method must be WorkOrderReceiptRetrieve,

params is a collection of the request parameters below

workOrderId is an id of the Work Order to retrieve

Work Order Receipt Retrieval Response Payload

This payload is sent back to a Requestor in response to the request defined in section Work Order
Receipt Retrieval Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"workOrderId": <hexadecimal string>,
"workerServiceId": <hexadecimal string>,
"workerId": <hexadecimal string>,
"requestorNonce": <hexadecimal string>,
"requestorId":< <hexadecimal string>,
"requestorSignature":< <hexadecimal string>,
"inputDataHashes":[<hexadecimal strings>],
"outputDataHashes":[<hexadecimal strings>],
"inputEncryptionKeys":[<hexadecimal strings>],

"outputEncryptionKeys":[<hexadecimal strings>],
"workerNonce": <hexadecimal string>,
"workerSignature": <hexadecimal string>,
"status": <string>

 }
}

result is a collection of the response specific parameters

workOrderId is an id of the Work Order

41 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

workerServiceId is the public key or the DID of the Worker (Worker Service) to execute the
Work Order, hexadecimal string

workerId is the public key or DID used by the Worker to sign the Work Order results,
hexadecimal string requestorGeneratedNonce is a nonce generated by the Requestor. Refer to
section New Work Order Receipt Request Payload for details.

requestorSignature is generated by the Requestor. Refer to section New Work Order Receipt
Request Payload for details.

requestorId is the public key or DID of Requestor that submitted the request Its value must
match the address of the sender who created the Work Order receipt

inputDataHashes* is an array of hashes of input data

outputDataHashes* is an array of hashes of output data

inputEncryptionKeys* is an array of input encryption keys

outputEncryptionKeys* is an array of output encryption keys

workerNonce* is the requestorGeneratedNonce

workerSignature is a signature generated by the worker. All parameters above are included in
the signature. Refer to the section Direct Mode Invocation for details.

status is a string indicating the Work Order execution status. It is not included in the signature.
Refer to workOrderReceiptComplete for the list of supported values.

Refer to Work Orders for more details

Work Order Receipt Lookup Request Payload

This payload is sent by a Requestor to get a list of Work Order Receipt Ids matching input
parameters. If more than one input parameters is provided, a receipt must match all parameters to
be included in the list (AND-op).

The response to this request is defined in section Work Order Receipt Lookup Response Payload.
Note that the response may not provide a complete list of matching ids, and the Requestor may
need to send one or more WorkOrderReceiptLookUpNext calls in order to retrieve the complete
list.

42 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-direct-model-invocation
file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-orders

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptLookUp",
 "id": <integer>,
 "params": {

"workerServiceId": <hex string>,
"workerId": <hex string>,
"requestorId": <hex string>,
"status": <hex string>

 }
}

method must be WorkOrderReceiptLookUp,

params is a collection of the request parameters below

workerServiceId is the public key or the DID of the Worker or Worker Service to execute the
Work Order, expressed as a hexadecimal string

workerId is the public key or DID used by the Worker to sign the Work Order results,
hexadecimal string

requestorId is the public key or DID of Requestor that submitted the request. Its value must
match the address of the sender who created the Work Order receipt

status is a string indicating the Work Order execution status. It is not included in the signature.
Refer to workOrderReceiptComplete for the list of supported values.

Work Order Receipt Lookup Response Payload

This payload is sent back to a Requestor in response to the request defined in sections Work Order
Receipt Lookup Request Payload and Work Order Receipt Lookup Next Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"totalCount": <int>,
"lookUpTag": < string>, //OPTIONAL
"ids":[<hexadecimal string>]

 }
}

result is a collection of the response specific parameters

43 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

totalCount is a total number of receipts matching the lookup criteria. If this number is bigger
than size of ids array, the caller should send Work Order Receipt Lookup Next Request Payload to
retrieve the rest of the ids.

lookupTag is an optional parameter. If it is returned, it means that there are more matching
receipts that can be retrieved by sending Work Order Receipt Lookup Next Request Payload with
this tag as an input parameter.

ids is an array of the Work Order receipt ids that match the input parameters

Work Order Receipt Lookup Next Request Payload

This function is called to retrieve additional results of the Work Order receipt lookup initiated by
the request defined in section Work Order Receipt Lookup Request Payload. Since the call may not
return the complete list if ids, more than one Work Order Receipt Lookup Next Request Payload
call may be necessary to retrieve the complete list. Each call should use the value of lookupTag
returned by the previous call.

The response to this request is defined in section Work Order Receipt Lookup Response Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkOrderReceiptLookUpNext",
 "id": <integer>,
 "params": {

 "workerServiceId": <hexadecimal string>,
 "workerId": <hexadecimal string>,
 "requestorId": <hexadecimal string>,
 "status": < hexadecimal string>,
 "lastLookUpTag": <hexadecimal string>

 }
}

method must be WorkOrderReceiptLookUpNext,

params is a collection of the request parameters below workerServiceId is the public key or the
DID of the Worker (Worker Service) to execute the Work Order, hexadecimal string

workerId is the public key or DID used by the Worker to sign the Work Order results,
hexadecimal string

requestorId is public key or DID of Requestor that submitted the request, must match the
address of the sender who created the Work Order receipt

status is a string indicating the Work Order execution status. It is not included in the signature.
Refer to workOrderReceiptComplete for the list of supported values.

44 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

lastLookupTag is returned by the previous response to either this Work Order Receipt Lookup
Next Request Payload or the original lookup request. Refer to section Work Order Receipt Lookup
Response Payload.

This appendix defines a JSON RPC API for registering Worker type specific information such that
it can be retrieved via a workerTypeDataURI. All messages follow a request-response pattern and
are completed synchronously during the same session.

Register Worker JSON Request Payload

This message registers a Worker. It doesn’t have a specific response payload; instead a generic
error response payload is sent back as a response.

{
 "jsonrpc": "2.0",
 "method": "WorkerRegister",
 "id": <integer>,
 "params": {

 "workerId":<hex string>,
 "workOrderInvocationAddress": <hex string>,
 "workOrderInvocationUri": <hex string>,
 "receiptInvocationAddress": <hex string>,
 "receiptInvocationUri": <hex string>,
 "fromAddress": <hex string>,
 "workOrderPayloadFormats": [<hex string>],
 "workerTypeData" : { …}

 }
}

method must be WorkerRegister,

params is an object containing the request parameters below

workerId is a unique Worker Id as a hex string or DID. It must match the id in the Worker
Registry.

workOrderInvocationURI is a URI that should be used to submit Work Orders to a Worker in
the direct mode. Multiple Workers belonging to a same organization can share the same URI.

receiptInvocationURI is a URI that should be used to manage Work Orders receipts processed
by this Worker in the direct mode. Multiple Workers such as Workers belonging to a same
organization can share the same URI.

8. Appendix A: `workerTypeData` URI JSON RPC API §

45 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

receiptInvocationAddress is an address of the Work Order Receipt smart contract that should
be used to manage Work Order receipts processed by a Worker in the proxy mode. Multiple
Workers can share the same address.

workOrderInvocationAddress is an address of the Work Order Invocation Proxy smart
contract that should be used to submit Work Orders for a Worker in the proxy mode.

fromAddress is an Ethereum address that is used by or on behalf of this Worker to submit
transactions.

workOrderPayloadFormats defines in what formats for Work Order requests and responses. A
Worker may support multiple formats. This specification defines following payload formats and the
list expected to grow.

JSON-RPC – the payloads are provided in JSON RPC format as defined in section "RPC
Encoding Conventions" without using JWT format for signatures.

JSON-RPC-JWT – the payloads are provided in JSON RPC format as defined in section "RPC
Encoding Conventions". In this case JWT format is used for the signatures.

Custom Work Order payload formats should start with tilde "~".

workerTypeData contains the Worker specific details in the format defined in
workOrderPayloadFormats

Set Worker Status JSON Request Payload

This message sets a Worker’s status. It doesn’t have a specific response payload; instead a generic
error response payload is sent back as a response.

{
 "jsonrpc": "2.0",
 "method": "WorkerSetStatus",
 "id": <integer>,
 "params": {

"workerId":<hex string>,
"status": <hex string>

 }
}

method must be WorkerSetStatus,

params is an object containing the request parameters below

workerId is a unique Worker Id as a hex string or DID

status can be one of active, offline, decommissioned, or compromised

46 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation

Retrieve Worker Type Info JSON Request Payload

This message retrieves information about the type of a Worker, and type-specific data, based on its
Workerid. The response is defined in section Retrieve Worker Type Info JSON Response Payload.

{
 "jsonrpc": "2.0",
 "method": "WorkerRetrieveTypeInfo"
 "id": <integer>,
 "params": {

"workerId": <hex string>
 }
}

method must be WorkerRetrieveTypeInfo,

params is an object containing the request parameters below

workerId is a unique Worker Id as a hex string or DID

Retrieve Worker Type Info JSON Response Payload

This payload is sent back to a Requestor in response to the request defined in section Retrieve
Worker Type Info JSON Request Payload.

{
 "jsonrpc": "2.0",
 "id": <integer>,
 "result": {

"workerId":<hex string>,
"workOrderInvocationAddress": <hex string>,
"workOrderInvocationUri": <hex string>,
"receiptInvocationAddress": <hex string>,
"receiptInvocationUri": <hex string>,
"fromAddress": <hex string>,
"workOrderPayloadFormats": <hex string>,
"workerTypeData" : {<JSON object>},
"status": <string>

 }
}

result is a collection of the response specific parameters. Refer to the output parameters in
sections Register Worker JSON Request Payload and Set Worker Status JSON Request Payload for
the description of the elements in this object.

workerId is a unique Workerid as a hex string or DID. It must match the id in the Worker
Registry.
47 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

workOrderInvocationURI is a URI that should be used to submit Work Orders to a Worker in
the direct mode. Multiple Workers belonging to a same organization can share the same URI.

receiptInvocationURI is a URI that should be used to manage Work Orders receipts processed
by this Worker in the direct mode. Multiple Workers such as Workers belonging to a same
organization can share the same URI.

receiptInvocationAddress is an address of the Work Order Receipt smart contract that should
be used to manage Work Order receipts processed by a Worker in the proxy mode. Multiple
Workers can share the same address.

workOrderInvocationAddress is an address of the Work Order Invocation Proxy smart
contract that should be used to submit Work Orders for a Worker in the proxy mode.

fromAddress is an Ethereum address that is used by or on behalf of this Worker to submit
transactions.

workOrderPayloadFormats defines in what format Work Order requests and responses are
provided for and by this Worker. This specification currently defines the following payload
formats:

JSON-RPC – the payloads are provided in JSON RPC format as defined in section Direct
Model Invocation.

Custom Work Order payload formats should start with tilde "~".

workerTypeData contains the Worker specific details, using the format defined in
workOrderPayloadFormats

status is a current status of the Worker

TEE workerTypeData

This section currently includes details for Intel SGX. Details for other TEEs may be added in
future.

Intel SGX workerTypeData

Proof Data

TEE-SGX-IAS indicates that an Intel Attestation Server (IAS) issued verification report is used as
the source attestation. It usually represents a unique Intel SGX TEE instance.

The proof data contains a verification report issued by SGX IAS.

48 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation

TEE-TRUST-CHAIN indicates that an Enclave was attested by another Enclave creating an
attestation or trust chain. In this case, the attesting Enclave provides the RSA and
ECDSA/SECP256K1 public-private key pairs sets for the Enclaves it is attesting. Requestors are
required to verify the trust chain to verify such a Enclave.

The proof data contains the signature generated by the attested Enclave. The signed message is a
concatenation of verification key, subscription key, and all Enclave measurements of the attested
Enclave.

Identification and attestation payload

{
 "workerTypeData": {

 "workerType":<hex string>, //"TEE-" prefix
 "verificationKey": <hex string>,
 "encryptionKey": <hex string>,
 "enclaveMeasurements": [<one or more hex strings>],
 "proofDataType": <hex string>,
 "proofData": <hex string>,

 }
}

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is a hex string representing a ECDSA/SECP256K1 public key used to verify
signatures created by the Enclave. This field must be included in the proofData.

encryptionKey is a hex string representing an RSA public key used to encrypt data sent to the
Enclave. This field must be included in the proofData.

enclaveMeasurements is an array of hexadecimal strings representing one or more
measurements. All values in this array must be included and attested in the proofData.

Requestors are expected to match Enclave measurements to required software off-chain unless the
blockchain client contains a pre-compiled contract that enables on-chain matching. For details on
the matching mechanism refer to https://software.intel.com/en-us/sgx.

proofDataType is one of the "TEE-" prefixed data types. For TEE type Intel SGX these are
"TEE-SGX-IAS", or "TEE-TRUST-CHAIN".

proofData is proof data corresponding to the proofDataType. See Proof data Implementation
Note.

Load Balancing and Enclave pools

49 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

https://software.intel.com/en-us/sgx
file:///Users/chaals/Documents/GitHub/trusted-computing/docs/implementation-note-proof-data

This specification assumes that Enclaves can be grouped into groups for better load balancing and
manageability. In such a case the same verification and encryption keys are provisioned to multiple
Enclaves. This specification supports "TEE-TRUST-CHAIN" proof data type to support Enclave
pools, e.g.

A master Enclave provides "SGX-IAS" proof data for its verification

The master Enclave generates verification and subscription keys for use by the pool Enclaves

The master Enclave securely provisions the keys to other Enclaves in the pool

Pool Enclaves are registered in the TEE Enclave Registry. Their verification and encryption is
signed by the master Enclave and the proof data type is set "TEE-TRUST-CHAIN". Since all
Enclaves in the pool share the same keys, it is recommended to represent all of them by a
single (master) Enclave record in the Worker Registry

To validate Enclave pool keys a Requestor should perform the following steps

1. Retrieve the Enclave pool record and check that its proof data type is "TEE-TRUST-CHAIN"

2. Retrieve master TEE Enclave registry info (specified in the Enclave pool proof data)

3. Check that the master proof data type is "SGX-IAS" and verify its proof data

4. Verify the signature generated by the master Enclave for the Enclave pool

The exact Enclave pool provisioning mechanism is outside the scope for this specification, but
Requestors can inspect enclaveMeasurements of the master Enclave to learn what provisioning
mechanism is used.

MPC workerTypeData

Identification and attestation payload

{
 "workerTypeData": {

"workerType":<hex string>, //"MPC-" prefix
"verificationKey": <hex string>,
"encryptionKey": <hex string>,
"proofDataType": <hex string>,
"proofData": <hex string>,

 }
}

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is a hex string representing a public key used to verify data provided by the
MPC worker. This field must be included in the proofData.

50 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

encryptionKey is as a hex string representing an asymmetric public key used to encrypt data sent
to the MPC worker. This field must be included in the proofData.

proofDataType is one of the "MPC-" prefixed data types to be defined in future.

proofData is proof data corresponding to the proofDataType. Refer to the section Implementation
Note for more details.

ZK workerTypeData

Identification and attestation payload

{
 "workerTypeData": {

 "workerType":<hex string>, //"ZK-" prefix
 "verificationKey": <hex string>,
 "encryptionKey": <hex string>,
 "proofDataType": <hex string>,
 "proofData": <hex string>,

 }
}

workerType is defined in section Worker Registry Smart Contract API.

verificationKey is as a hex string representing a public key used to verify proofs generated by
the ZK worker. This field must be included in the proofData.

encryptionKey is as a hex string representing an asymmetric public key used to encrypt data sent
to the ZK worker. This field must be included in the proofData.

proofDataType is one of the "ZK-" prefixed data types to be defined in future.

proofData is proof data corresponding to the proofDataType. Refer to "Implementation Note"
chapter for more details.

This section is non-normative.

9. Implementation notes §

9.1 Note 1: Receipts §

51 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-implementation-note

Work Order Receipts are created upon each successful or unsuccessful Work Order execution.
They are created (and signed) by the Requestor and later updated (and signed) by the Worker
making sure that parties involved in the transaction can use it for tracking, auditing, dispute
resolution, and fraud detection. This specification supports per Work Order Receipt as an option.

It is left to the implementation to decide whether to store Receipts on the main blockchain or
somewhere else. Similarly, when supporting high volume use-cases (e.g. an IOT use-case), it is left
to the implementation to decide if Receipt updates to the main blockchain should be batched.
Implementations may decide to keep Receipts off the main blockchain such as in a side-chain or
trusted database.

Details of a Worker Service are left for an implementation to decide. The following functions are
expected:

A Worker Service can assist in registering a Worker with either the main blockchain or an off-
chain registry.

A Worker Service can support a single or a group of Workers. Workers may be registered
individually, enabling Requestors to select a particular Worker for Work Order execution, or
multiple Workers may be registered and managed collectively as a Worker Pool. When a
Requestor selects a Worker Pool, the Worker Service chooses which Worker(s) in the pool
will be used to execute a particular Work Order. Requestors should be able to lookup all
Workers belonging to the same Worker Service. In this specification a Worker Pool is used
synonymously with a Worker.

A Worker is represented using an URI and a RSA and ECDSA/SECP256K1 public key set by
its Worker Service on the main blockchain. An URI can represent a single Worker or multiple
individually addressable Workers, one or multiple Worker Pools, or any combination of
individually addressable Workers or Worker Pools. All Workers in a pool (represented by a
single URI) can share a common RSA and ECDSA/SECP256K1 public key set. Appropriate
pooling of Workers is left for deployments to decide. For example, pools could be based on
location of Workers, type of Workers, etc...

A Worker Service can act as a proxy for signing Ethereum transactions originating in a
Worker (e.g. the Worker Service has the Ethereum public key that is used to create an
Ethereum transaction that contains the updated Work Order Receipt generated by a Worker).

The same "from" Ethereum public key (and its associated account address) can be used by the
Worker Service on behalf of all or some of its Workers. Alternatively, an individual Ethereum
public key can be assigned to each Worker.

Proxy JSON APIs are for Work Order invocation by a Worker in direct mode.

9.2 Note 2: Worker Service §

52 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

If a Worker Service supports Work Order proxy invocation mode, it should deploy at least one
Work Order Invocation Proxy smart contract, but may deploy more. The same smart contract
address can be used for submitting Work Orders to multiple Workers.

Given that Worker Service and Worker can have 1-to-1 or 1-to-many relationships, the term
Worker as used in this specification may imply a Worker Service as appropriate.

This specification support different work proof data types for different types of Trusted Computes.
The following proof data types are currently defined:

TEE-Proof is an attestation produced by a TEE that the requestor can use to validate that the
work order was executed inside a TEE.

ZK-Proof is the witness produced by a prover that verifiers can use to verify a claim with zero
knowledge (for example, the correct execution of a piece of software on a specific input set
with a specific output). The proof data for non-interactive zero knowledge proofs contains the
Witness and the Verification circuit together with the signature of the issuing trusted compute
resource.

MPC-Proof are the m outputs computed by the m compute resources each holding a share of
the original input. The reconstruction of the shared m outputs yields the complete result of the
program that was converted into a randomized logical circuit of AND and XOR gates and
used to compute each output. The order of the gates itself has been randomized and both
inputs and outputs are encrypted. After the circuit construction has been shared amongst all
counterparties, the proof data consists of the m outputs of the application of the circuit signed
by the trusted resource and distributed to all participating compute resources.

DID-Proof refers to the DID document object (DDO) as defined by the W3C. The proof data
contains the attesting DID and the information from the DDO required to verify the Worker.

Custom Proofs must start with a tilde "~"

A Requestor is an entity that issues Work Orders using either a ÐApp or an application smart
contract. Requestors are identified by an Ethereum public key or a DID that can be resolved to an
Ethereum public key. Requestor management is out of scope for this specification and will be
covered as part of EEA Requestor permissioning.

9.3 Note 3: Proof Data §

A. Additional Information §

A.1 Terminology §

53 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation

A Worker is a computational resource for Work Order execution. A Worker may be identified by
an Ethereum public key or a DID.

Trusted Compute is a trusted computational resource for Work Order execution. It preserves data
confidentiality, execution integrity and enforces data access policies. All Workers described in this
specification are also Trusted Compute. Trusted Compute may implement those assurances in
various ways. For example, Trusted Compute can base its trust on software based cryptographic
security guarantees, a service’s reputation, virtualization, or a HW based Trusted Execution
Environment such as Intel’s SGX.

A Trusted Execution Environment (TEE) is a hardware based technology that executes only
validated tasks, produces attested results, provides protection from malicious host software, and
enforces confidentiality of shared encrypted data.

An Enclave is an instantiation of Trusted Compute within a hardware based TEE. Certain hardware
based TEEs, including Intel SGX, allow multiple instances of Enclaves executing concurrently. For
simplification, in this specification terms TEE and Enclave are used interchangeably.

A Worker Service is an implementation dependent middleware entity that acts as bridge for
communications between Ethereum Blockchain and a Worker. A Worker Service may belong to an
enterprise, a cloud service provider, or an individual sharing his or her available computational
resources (subject to provisioning).

A Work Order (WO) is a unit of work submitted by a Requestor for execution to a Worker. Work
Orders may include one or more inputs (e.g. messages, input parameters, state, and datasets) and
one or more outputs. Work Order inputs and outputs can be sent as part of the request or response
body (a.k.a. inline) or as links to a remote storage locations. Work Order inputs and outputs are
normally sent encrypted.

The Direct Model is a Work Order execution model in which a Requestor ÐApp directly invokes a
JSON RPC network API for Work Order execution in a Worker.

The Proxy Model is a Work Order execution model in which a Work Order Invocation Proxy smart
contract is used by an enterprise application smart contract to invoke Work Order execution in a
Worker.

An Attested Oracle is a device that uses Trusted Compute to attest some data (e.g. environmental
characteristics, financial values, inventory levels).

B. References §

B.1 Normative references §

54 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

file:///Users/chaals/Documents/GitHub/trusted-computing/docs/sec-work-order-invocation

[JSON-RPC-API]
Ethereum JSON-RPC API. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/JSON-RPC

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC7519]
JSON Web Token (JWT). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://tools.ietf.org/html/rfc7519

[RFC8017]
PKCS #1: RSA Cryptography Specifications Version 2.2. K. Moriarty, Ed.; B. Kaliski; J.
Jonsson; A. Rusch. IETF. November 2016. Informational. URL:
https://tools.ietf.org/html/rfc8017

[secp256k1]
SEC2: Recommended Elliptic Curve Domain Parameters. Certicom Research. URL:
http://www.secg.org/sec2-v2.pdf

B.2 Informative references §

55 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf

