
Daniel Burnett (ConsenSys)
Robert Coote (ConsenSys)
Chaals Nevile (EEA)
Grant Noble (ConsenSys)

Contributors:
The TEE task force within the Enterprise Ethereum Alliance Technical Specification Working
Group, and Ashfaq Ahmed (Broadridge), Duarte Aragao (Clearmatics Technologies Limited),
Meredith Baxter (ConsenSys), Sanjay Bakshi (Intel), Clifton Barber (Enterprise Ethereum
Alliance), Thomas Bertani (Oraclize), Benjamin C Burns (ConsenSys), Jean-Charles
Cabelguen (iEx.ec), Alice Corsini (Oraclize), Jeremy Cousins (Clearmatics Technologies
Limited), Robert Dawson (ConsenSys), Robert Drost (ConsenSys), Samer Falah (JP Morgan),
Sara Feenan (Clearmatics Technologies Limited), Lior Glass (BNY Mellon), Bill Gleim
(ConsenSys), Mark Grand (HCL), Dan Guido (Trail of Bits), Timothy Holland (Blockapps
Inc), David Hyland-Wood (ConsenSys), Kieren James-Lubin (Blockapps Inc), Shahan
Khatchadourian (ConsenSys), John S Lee (Bunz), Cen Liu (Blockapps Inc), Tyrone Lobban
(JP Morgan), Martin Michlmayr (Clearmatics Technologies Limited), Mike Myers (Trail of
Bits), Immad Naseer (Microsoft), Alex Oberhauser (Cambridge Blockchain), George Ornbo
(Clearmatics Technologies Limited), Fernando Pari (ioBuilders), George Polzer (Everyman's
AI), Dhyan Raj (Synechron), Ron Resnick (Enterprise Ethereum Alliance), Peter Robinson
(ConsenSys), Dan Selman (Clause.io), Przemek Siemion (Banco Santander), Conor Svensson
(blk.io), Antoine Toulme (ConsenSys), Ben Towne (SAE ITC), John Whelan (Banco
Santander), Tom Willis (Intel), Victor Wong (Blockapps), Jim Zhang (ConsenSys).

Enterprise Ethereum Alliance - Enterprise
Ethereum Client Specification V2
15 October 2018

Editors:

Abstract

This document specifies Enterprise Ethereum, a set of extensions to the public Ethereum
blockchain to support the scalability, security, and privacy demands of enterprise deployments.

1 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

The copyright in this document is owned by Enterprise Ethereum Alliance Inc. (“EEA” or
“Enterprise Ethereum Alliance”). No modifications, edits or changes to the information in this
document are permitted. Subject to the terms and conditions described herein, this document may
be duplicated for internal use, provided that all copies contain all proprietary notices and
disclaimers included herein. Except as otherwise provided herein, no license, express or implied,
by estoppel or otherwise, to any intellectual property rights are granted herein.

Use of this document and any related intellectual property incorporated herein, is also governed by
the Bylaws, Intellectual Property Rights Policy and other governing documents and policies of
EEA and is subject to the disclaimers and limitations described below.

No use or display of any of the following names or marks “Enterprise Ethereum Alliance”, the
acronym “EEA,” the EEA logo (or any combination thereof) to claim compliance with or
conformance to this document (or similar statements) is permitted absent EEA membership and
express written permission from the EEA. The EEA is in process of developing a compliance
testing and certification program only for the EEA members in good standing, which it expects to
launch in 2019.

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, SATISFACTORY
QUALITY, OR REASONABLE SKILL OR CARE, OR ANY WARRANTY ARISING OUT OF
ANY COURSE OF DEALING, USAGE, TRADE PRACTICE, PROPOSAL, SPECIFICATION
OR SAMPLE. EEA DOES NOT WARRANT THAT THIS DOCUMENT IS COMPLETE OR
WITHOUT ERROR AND DISCLAIMS ANY WARRANTIES TO THE CONTRARY.

Each user of this document hereby acknowledges that software or products implementing the
technology specified in this document (“EEA-Compliant Products”) may be subject to various
regulatory controls under the laws and regulations of various governments worldwide. Such laws
and regulatory controls may govern, among other things, the combination, operation, use,
implementation and distribution of EEA-Compliant Products. Examples of such laws and
regulatory controls include, but are not limited to, airline regulatory controls, telecommunications
regulations, finance industry and security regulations, technology transfer controls, health and
safety and other types of regulations. Each user of this document is solely responsible for the
compliance by their EEA-Compliant Products with any such laws and regulations and for obtaining
any and all required authorizations, permits, or licenses for their EEA-Compliant Products related
to such regulations within the applicable jurisdictions. Each user of this document acknowledges
that nothing in this document or the relevant specification provides any information or assistance in
connection with securing such compliance, authorizations or licenses.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES WHATSOEVER
REGARDING THE APPLICABILITY OR NON-APPLICABILITY OF ANY SUCH LAWS OR
REGULATIONS OR THE SUITABILITY OR NON-SUITABILITY OF ANY SUCH PRODUCT
OR SERVICE FOR USE IN ANY JURISDICTION.

EEA has not investigated or made an independent determination regarding title or non-
infringement of any technologies that may be incorporated, described or referenced in this
document. Use of this document or implementation of any technologies described or referenced
herein may therefore infringe undisclosed third-party patent rights or other intellectual property
rights. The user is solely responsible for making all assessments relating to title and non-
infringement of any technology, standard, or specification referenced in this document and for
obtaining appropriate authorization to use such technologies, standards, and specifications,
including through the payment of any required license fees.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR
NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR
SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT.

IN NO EVENT SHALL EEA OR ANY OF ITS MEMBERS BE LIABLE TO THE USER OR TO
A THIRD PARTY FOR ANY CLAIM ARISING FROM OR RELATING TO THE USE OF THIS
DOCUMENT, INCLUDING, WITHOUT LIMITATION, A CLAIM THAT SUCH USE
INFRINGES A THIRD PARTY’S INTELLECTUAL PROPERTY RIGHTS OR THAT IT FAILS
TO COMPLY WITH APPLICABLE LAWS OR REGULATIONS. BY USE OF THIS
DOCUMENT, THE USER WAIVES ANY SUCH CLAIM AGAINST EEA AND ITS
MEMBERS RELATING TO THE USE OF THIS DOCUMENT.

EEA reserves the right to adopt any changes or alterations to this document as it deems necessary
or appropriate without any notice. User is solely responsible for determining whether this
document has been superseded by a later version or a different document.

©2018 Enterprise Ethereum Alliance Inc. All Rights Reserved.

Legal Notice §

2 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

NON-SUITABILITY OF ANY SUCH PRODUCT OR SERVICE FOR USE IN ANY
JURISDICTION.

Enterprise Ethereum Alliance has not investigated or made an independent determination regarding
title or non-infringement of any technologies that may be incorporated, described or referenced in
this document. Use of this document or implementation of any technologies described or
referenced herein may therefore infringe undisclosed third-party patent rights or other intellectual
property rights. The user is solely responsible for making all assessments relating to title and non-
infringement of any technology, standard, or specification referenced in this document and for
obtaining appropriate authorization to use such technologies, standards, and specifications,
including through the payment of any required license fees.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR
NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR
SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT.

IN NO EVENT SHALL ENTERPRISE ETHEREUM ALLIANCE OR ANY OF ITS MEMBERS
BE LIABLE TO THE USER OR TO A THIRD PARTY FOR ANY CLAIM ARISING FROM OR
RELATING TO THE USE OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, A
CLAIM THAT SUCH USE INFRINGES A THIRD PARTY’S INTELLECTUAL PROPERTY
RIGHTS OR THAT IT FAILS TO COMPLY WITH APPLICABLE LAWS OR REGULATIONS.
BY USE OF THIS DOCUMENT, THE USER WAIVES ANY SUCH CLAIM AGAINST
ENTERPRISE ETHEREUM ALLIANCE AND ITS MEMBERS RELATING TO THE USE OF
THIS DOCUMENT.

©2018 Enterprise Ethereum Alliance reserves the right to adopt any changes or alterations to this
document as it deems necessary or appropriate without any notice. The user is solely responsible
for determining whether this document has been superseded by a later version or a different
document.

©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Status of This Document

This section describes the status of this document at the time of its publication. Newer documents
might supersede this document.

The changes made since version 1 of the Specification, published on 2 May 2018, have been
reviewed by the Enterprise Ethereum Alliance (EEA) Technical Specification Working Group
(TSWG). The TSWG agreed on 2018-09-27 to request that the EEA Board approve this draft to be
published as an EEA Standard obsoleting the Enterprise Ethereum Client Specification version 1.

3 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

1.
1.1

2.
2.1
2.2

3.
3.1
3.2
3.3
3.4

4.
4.1
4.2
4.3
4.4

The EEA is in process of developing a compliance testing and certification program only for the
EEA members in good standing, which it expects to launch in 2019.

The TSWG expects at time of writing to produce a new revision of this specification for release in
the second quarter of 2019 which would obsolete this version.

Although predicting the future is known to be difficult, as well as ongoing quality enhancement,
future work on this specification is expected to include the following aspects:

Improved permission management.

Requirements and techniques to understand and manage network performance.

Stronger requirements for interoperability as important components of the ecosystem become
more generally interoperable.

Adoption of improvements to the Ethereum ecosystem, such as new technologies or
techniques.

Continued assessment of the needs of different industries to ensure their requirements for
Enterprise Ethereum are taken into account.

Please send any comments to the EEA Technical Steering Committee at
https://entethalliance.org/contact/.

Introduction
Why Produce a Client Specification?

Conformance
Experimental Requirements
Requirement Categorization

Security Considerations
Attacks on Ethereum Clients
Positive Security Design Patterns
Handling of Sensitive Data
Security of Client Implementations

Enterprise Ethereum Concepts
Network Layer
Core Blockchain Layer
Privacy and Scaling Layer
Tooling Layer

Table of Contents

4 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

4.5

5.
5.1
5.2
5.3

6.
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.3.3
6.3.3.1

6.3.3.2

6.3.3.3

6.3.4
6.3.4.1

6.3.4.2

6.3.4.3

6.3.4.4

6.3.4.5

6.3.5
6.3.6

7.
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
7.2.1
7.2.2
7.2.3

Application Layer

Application Layer
ÐApps Sublayer
Infrastructure Contracts and Standards Sublayer
Smart Contract Tools Sublayer

Tooling Layer
Permissions and Credentials Sublayer

Nodes
Participants
Ethereum Accounts
Additional Permissioning Requirements

Integration and Deployment Tools Sublayer
Integration Libraries
Enterprise Management Systems

Client Interfaces Sublayer
JSON-RPC
Compatibility with the Core Ethereum JSON-RPC API
Extensions to the JSON-RPC API

eea_sendTransactionAsync

eea_sendTransaction

eea_clientCapabilities

Network Permissioning Using Smart Contracts
Participant

ParticipantGroup

Network

PermissioningDecider

Node Blacklisting

Inter-chain
Oracles

Privacy and Scaling Layer
Privacy Sublayer

On-chain
Off-chain (Trusted Computing)
Private Transactions
Privacy Levels

Scaling Sublayer
On-chain (Layer 1)
On-chain (Layer 2)
Off-chain (Compute)

5 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

7.2.4

8.
8.1
8.1.1
8.2
8.3

9.
9.1

10.

11.

12.

A.
A.1
A.2
A.3

B.
B.1
B.2

Performance

Core Blockchain Layer
Storage and Ledger Sublayer

Finality
Execution Sublayer
Consensus Sublayer

Network Layer
Network Protocol Sublayer

Anti-Spam

Cross-client Compatibility

Synchronization and Disaster Recovery

Additional Information
Terminology
Acknowledgments
Changes

References
Normative references
Informative references

1. Introduction §

This section is non-normative.

This Specification defines implementation requirements for Enterprise Ethereum clients, including
interfaces to the external-facing components of Enterprise Ethereum and how they are intended to
be used.

Enterprise Ethereum is based on technologies and concepts of public Ethereum, only extending
that as necessary to support the needs of enterprise deployments. The extensions to public
Ethereum are designed to satisfy the performance, permissioning, and privacy demands of
enterprise deployments, informally known as the “three Ps” of Enterprise Ethereum.

1.1 Why Produce a Client Specification? §

6 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

With a growing number of vendors developing Ethereum clients, meeting the requirements for
Enterprise Ethereum ensures different clients can communicate with each other and can all work
reliably on an Enterprise Ethereum network.

For Ðapp developers, for example, a Client Specification ensures clients provide a set of identical
interfaces, so they can be sure their app will work on all conforming clients. This enables an
ecosystem where users can change the software they use to interact with a running blockchain,
instead of being forced to rely on a single vendor to provide support.

From the beginning, this approach has underpinned the development of Ethereum, and it meets a
key need for enterprise blockchain use.

Client diversity also provides a natural mechanism to help verify that the protocol specification is
unambiguous because interoperability errors revealed in development highlight parts of the
protocol that different engineering teams interpret in different ways.

Finally, standards-based interoperability allows enterprise users to leverage the widespread
knowledge of Ethereum in the blockchain development community to minimize the learning curve
for working with Enterprise Ethereum, and thus reduces risk when deploying an Enterprise
Ethereum network.

This Specification includes requirements and Application Programming Interfaces (APIs) that are
described as experimental. Experimental means that a requirement or API is in early stages of
development and might change as feedback is incorporated. Implementors are encouraged to
implement these experimental requirements, with the knowledge that requirements in future
versions of the Specification are not guaranteed to be compatible with the current version. Please

2. Conformance §

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT are to be interpreted as
described in [RFC2119].

This Specification extends the capabilities and interfaces of public Ethereum.

[P] XCLI-005: Features of public Ethereum, if implemented, MUST be compatible with the
Metropolis phase 1: Byzantium, 16 October 2017 release of Ethereum.

Future versions of this Specification are expected to align with newer public Ethereum versions.

2.1 Experimental Requirements §

7 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

send your comments and feedback on the experimental portions of this Specification to the EEA
Technical Steering Committee at https://entethalliance.org/contact/.

All requirements in this Specification are categorized, as described in the table below.

Table 1 Requirement Categorization

Category Prefix Description

Protocol [P]
The desired properties and correctness of the system will be jeopardized if
all clients do not follow this requirement.

Client [C]

The desired properties and correctness of the system will not be
jeopardized if all clients do not follow this requirement. Client
requirements are usually those requirements that do not impact global
system behavior.

External [E]
Apply to components other than the EEA client. External requirements
are usually further sub-classified, as shown below.

External:
Development

[E:D]
An external requirement related to tooling and development of smart
contracts.

External:
Operations

[E:O]
An external requirement related to operations, including monitoring and
infrastructure management.

This section is non-normative.

Security of information systems is a major field of work. Enterprise Ethereum software
development shares with all software development the need to consider security issues and the
obligation to update implementations in line with new information and techniques to protect its
users and the the ecosystem in which it operates.

However some aspects of Ethereum in general, and Enterprise Ethereum in particular, are
especially important in the enterprise environment.

Enterprise Ethereum software development shares with all software development the need to
consider security issues and the obligation to update implementations in line with new information
and techniques to protect its users and the ecosystem in which it operates.

2.2 Requirement Categorization §

3. Security Considerations §

8 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Modeling attacks against an Enterprise Ethereum client helps identify and prioritize the necessary
security countermeasures to implement. Some attack categories to consider include:

Attacks on unauthenticated [JSON-RPC] interfaces through malicious JavaScript in the
browser using DNS rebinding.

"Eclipse attacks" that attempt to exhaust client network resources or fool its node-discovery

protocol.

Targeted exploitation of consensus bugs in EVM implementations.

Malicious code contributions to open-source repositories.

All varieties of social engineering attacks.

The implications of private data stored on the network are also important to consider, and motivate
several requirements within this Specification.

The long-term persistence of encrypted data on any public platform (such as the Ethereum
blockchain) exposes it to eventual decryption by brute-force attack, accelerated by the inevitable
periodic advances in cryptanalysis. A future shift to post-quantum cryptography is a current
concern, but it will likely not be the last advancement in the field. Assuming no encryption scheme
endures for eternity, a degree of protection is required to reasonably exceed the lifetime of the
data's sensitivity.

3.1 Attacks on Ethereum Clients §

3.2 Positive Security Design Patterns §

Complex interfaces increase security risk by making user error more likely. For example, entering
Ethereum addresses by hand is prone to errors. Therefore, implementations can reduce the risk by
providing user-friendly interfaces, ensuring users correctly select an opaque identifier using tools
like a contact manager.

Ethereum features such as Gas mitigate the risk of resource-consumption attacks by rogue network
participants. Enterprise Ethereum provides additional tools to reduce security risks, such as more
granular permissions for actions in a network.

Permissioning plays some role in mitigating network-level attacks (like the 51% attack), but it is
important to carefully consider what risks are of most concern to a client implementation versus
which risks are better mitigated by updates to the Ethereum consensus protocol design.

3.3 Handling of Sensitive Data §

9 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Besides user-generated data, an Ethereum client is also responsible for managing and protecting
private keys. Encrypting private keys with a pass phrase or other authentication credential before
storage helps protect them from disclosure. It is also important not to disclose sensitive data when
recording events to a log file.

3.4 Security of Client Implementations §

There are several specific functionality areas that are more prone to security issues arising from
implementation bugs. These deserve a greater focus during the design and the security assessment
of an Enterprise Ethereum client:

• P2P protocol implementation

• Object deserialization routines

• Ethereum Virtual Machine (EVM) implementation

• Key pair generation.

The P2P protocol used for communication among nodes in the peer-to-peer Ethereum network is a
client's primary vector for exposure to untrusted input. In any software, the program logic that
handles untrusted inputs is the primary focus area for implementing secure data handling.

Object (de)serialization is commonly part of the underlying implementation of the P2P protocol,
but also a source for complexity that has historically been prone to security vulnerabilities across
many implementations and many programming languages. Selecting a deserializer that offers strict
control of data typing can help mitigate the risk.

EVM implementation correctness is an especially important security consideration for Ethereum
clients. Unless EVMs behave identically for all possibilities of input, there is a serious risk of a
hard fork event caused by an input that elicits the differences in behavior across clients. EVM
implementations are also exposed to denial-of-service attempts by maliciously constructed smart
contracts, and the even more serious risk of an exploitable remote-code-execution vulnerability.

The Ethereum specification defines many of the technical aspects of public/private key pair format
and cryptographic algorithm choice, but an Ethereum client implementation is still responsible for
properly generating these keys using a well-reviewed cryptographic library. Specifically, a client
implementation needs a properly seeded, cryptographically secure, pseudo-random number
generator during the keypair generation step. An insecure pseudo-random number generator is not
generally apparent by merely observing its outputs, but enables attackers to break the encryption
and reveal users' sensitive data.

4. Enterprise Ethereum Concepts §

10 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

This section is non-normative.

Enterprise Ethereum implementations are extensions to public Ethereum providing enterprise-
focused additions, including the capability to perform private transactions, enforce membership
(permissioning), and provide transaction throughput scaling. Private transactions are transactions
where the metadata or payload data are readable only by parties participating in those transactions.

The following two diagrams show the relationship between Enterprise Ethereum components that
can be part of any EEA-compliant client implementation. The first is a stack representation of the
architecture showing a library of interfaces, while the second is a more traditional style architecture
diagram showing a representative architecture.

ENTERPRISE ETHEREUM ARCHITECTURE STACK
APPLICATION

DAPPS APPLICATIONS EXPLORERS, MONITORING & BUSINESS INTELLIGENCE

INFRA CONTRACTS &
STANDARDS IDENTITY RBAC NETWORK GOVERNANCE TOKEN STANDARDS ETHEREUM NAME SERVICE

SMART CONTRACT
TOOLS SMART CONTRACT LANGUAGES FORMAL VERIFICATION

TOOLING
PERMISSIONS &
CREDENTIALS WALLETS KEY MANAGEMENT HSM PERMISSIONING / AUTHENTICATION

INTEGRATION &
DEPLOYMENT TOOLS INTEGRATION LIBRARIES ENTERPRISE MANAGEMENT SYSTEMS

CLIENT INTERFACES /
APIs JSON-RPC INTER-CHAIN ORACLES

PRIVACY / SCALING

PRIVACY ON-CHAIN OFF-CHAIN (TRUSTED EXECUTION) PRIVATE TRANSACTIONS

SCALING ON-CHAIN (LAYER 1) OFF-CHAIN (LAYER 2 COMPUTE)

CORE BLOCKCHAIN

STORAGE/LEDGER ON-CHAIN PUBLIC STATE ON-CHAIN STORAGE OFF-CHAIN STORAGE ON-CHAIN PRIVATE STATE

EXECUTION EVM SYNC PRECOMPILED CONTRACTS TRUSTED EXECUTION

CONSENSUS PUBLIC CONSENSUS PRIVATE CONSENSUS

NETWORK

NETWORK PROTOCOL DEVP2P ENTERPRISE P2P

LEGEND Yellow Paper Public Ethereum Application Layer Enterprise Ethereum

All Yellow Paper, Public Ethereum, and Application Layer components may be extended for Enterprise Ethereum as required.

© 2018 Enterprise Ethereum Alliance

Figure 1. Enterprise Ethereum Architecture Stack

11 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Figure 2. Representative Enterprise Ethereum High-level Architecture

The architecture stack for Enterprise Ethereum consists of the following five layers:

Network

Core Blockchain

Privacy and Scaling

Tooling

Application.

These layers are described in the following sections.

4.1 Network Layer §

12 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

The Core Blockchain layer consists of a mechanism to establish consensus between Ethereum
nodes for the acceptance of new blocks. Public consensus algorithms provide a method of doing
this when operating with public Ethereum chains. An example of a public consensus algorithm is
the Proof of Work (PoW) algorithm, described in the [Ethereum Yellow Paper]. Over time, PoW is
likely to be phased out from use and replaced with new methods, such as Proof of Stake (PoS).

Enterprise Ethereum implementations provide private consensus algorithms for operations within
their private consortium network.

The Privacy and Scaling layer implements the necessary privacy and scaling extensions needed in
Enterprise Ethereum to support enterprise-grade deployments.

This Specification does not seek to constrain experimentation to improve the scalability of future
implementations of public Ethereum or Enterprise Ethereum. Instead, there is recognition that
several forms of scaling improvements will be made to clients over time, the exact form of which
cannot be known at this time.

Scaling solutions are broadly categorized into layer 1 and layer 2 solutions.

The Network layer consists of an implementation of a peer-to-peer (P2P) networking protocol
allowing Ethereum nodes to communicate with each other using, for example, the DEVp2p
protocol. Additional enterprise P2P protocols will be formalized over time to provide the
communications needed to supplement higher levels of the stack.

4.2 Core Blockchain Layer §

EXAMPLE 1: Consensus Algorithms

Example consensus algorithms include Istanbul [Byzantine-Fault-Tolerance] (IBFT) [EIP-650],
[RAFT], and Proof of Elapsed Time [PoET].

The Execution sublayer implements a virtual machine used within a client, such as the Ethereum
Virtual Machine (EVM) or Ethereum-flavored WebAssembly [eWASM], its instruction set, and
other computational capabilities as required.

Lastly, within the Core Blockchain layer, the Storage and Ledger sublayer is provided to store the
blockchain state, such as smart contracts for later execution. This sublayer follows blockchain
security paradigms such as using cryptographically hashed tries, an Unspent Transaction Output
(UTXO) model, or at-rest-encrypted key-value stores.

4.3 Privacy and Scaling Layer §

13 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Finally, the Application layer exists, often fully or partially outside of a client, where higher-level
services are provided. For example, Ethereum Name Service (ENS), node monitors, blockchain

Layer 1 scaling solutions are implemented at the base level protocol layer. On-Chain (Layer 1)
scaling might be implemented using techniques such as [sharding] and easy parallelizability
[EIP-648].

Layer 2 scaling solutions do not require changes to the base level protocol layer and are
implemented at the application protocol layer using smart contracts. Off-Chain (Layer 2) scaling
mechanisms might be implemented using techniques such as [Plasma] and [state-channels] as well
as other Off-Chain (Compute) scaling mechanisms.

Similarly, various On-Chain privacy mechanisms are being explored, such as support for zero-
knowledge proofs on public Ethereum.

Enterprise Ethereum implementations are required to provide support for private transactions as
described in later sections. Enterprise Ethereum implementations can also provide support for off-
chain Trusted Computing, enabling privacy during code execution.

4.4 Tooling Layer §

The Tooling layer contains the APIs used to communicate with clients. The primary API is a JSON-
RPC API used to submit transactions for execution or to deploy smart contracts to maintain
arbitrary state. Other APIs are allowed, including those intended for inter-blockchain operations and
to call external services, such as trusted oracles.

Public Ethereum nodes are often implemented using common integration libraries, such as [web3j],
[web3.js], or [Nethereum]. Likewise, Enterprise Ethereum implementations are expected to
integrate with enterprise management systems using common APIs, libraries, and techniques.

Public Ethereum nodes can choose to offer local handling of user credentials, such as key
management systems and wallets. Such facilities might also be implemented outside the scope of a
client. Enterprise Ethereum implementations enable restricted operations based on user permissions
and authentication schemes.

The Tooling layer also provides support for the compilation, and possibly formal verification of,
smart contracts through the use of parsers and compilers for one or more smart contract languages.
Languages such as [Solidity] and [LLL] are commonly implemented, but support for other
languages might be provided without restriction.

4.5 Application Layer §

14 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

state visualizations and explorers, self-sovereign and other identity schemes, wallets, and any other
applications of the ecosystem envisaged.

Wallets can interface with Enterprise Ethereum extensions using the Extended RPC API, as shown
in Figure 2. A wallet can also interface directly with the enclave of a private transaction manager,
or interface with a public Ethereum client.

The Infrastructure Contracts and Standards sublayer shows emerging standards outside the
Enterprise Ethereum core specification. The components in this layer provide enablers for the
applications built on top of them.

Role Based Access Control (RBAC) defines methods for authentication and restricting system
access to authorized users, potentially realized through smart contracts.

Network Governance methods control which entities can join the network and hence assist with
safeguarding exchanges.

Token standards provide common interfaces and methods along with best practices. These include
[ERC-20], [ERC-223], [ERC-621], [ERC-721], and [ERC-827].

5. Application Layer §

The Application layer sits at the top of the Enterprise Ethereum stack. This layer contains the
components that are built on top of the core Enterprise Ethereum architecture.

5.1 ÐApps Sublayer

Decentralized applications (ÐApps) run on top of Ethereum.

§

[C] DAPP-010: ÐApps MAY use the Enterprise Ethereum extensions to the JSON-RPC API
defined in this Specification.

Also at this layer are the blockchain explorers, the tools to monitor the blockchain, and the
business intelligence tools.

5.2 Infrastructure Contracts and Standards Sublayer §

EXAMPLE 2: Decentralized Identity Standards

Decentralized identity standards are being developed by the Decentralized Identity Foundation
[DIF].

15 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Enterprise Ethereum inherits the smart contract tools used by public Ethereum. This consists of
smart contract languages and associated parsers, compilers, and debuggers, as well as methods used
for formal verification of smart contracts.

[E:D] SMRT-010: Implementations MUST provide deployment and debugging tools for Enterprise
Ethereum smart contracts.

[E:D] SMRT-020: Implementations SHOULD extend formal verification methods for use with
Enterprise Ethereum smart contracts.

Enterprise Ethereum implementations enable use of these tools and methods through
implementation of the Execution sublayer, as described in Section 8.2 Execution Sublayer.

The ENS provides a secure mapping from simple, human-readable names to Ethereum addresses
for resources both on and off the blockchain.

5.3 Smart Contract Tools Sublayer §

EXAMPLE 3: Smart Contract Deployment and Debugging Tools

Examples of smart contract deployment and debugging tools used in public Ethereum include
[Truffle] and [Remix].

6. Tooling Layer §

6.1 Permissions and Credentials Sublayer §

Permissioning refers to the ability of an individual node to join the network, and the ability of an
individual participant or node to perform specific functions on the Enterprise Ethereum network.
For example, only certain nodes can act as validators, while other participants can instantiate smart
contracts.

Enterprise Ethereum provides a permissioned implementation of Ethereum supporting transaction
privacy. Privacy can be realized at various levels, including peer node connectivity permissioning,
participant-level permissioning, controlling which nodes see, relay, and store private transactions,
and cryptographically protecting transaction data.

6.1.1 Nodes §

16 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[C] NODE-010: Enterprise Ethereum implementations MUST provide the ability to specify at
startup a list of static peer nodes to establish peer-to-peer connections with.

[C] NODE-020: Implementations MUST provide the ability to enable or disable peer-to-peer node
discovery.

[P] NODE-030: Implementations MUST provide the ability to specify a whitelist of the node
identities permitted to join the network.

[P] NODE-040: Implementations MAY provide the ability to specify a blacklist of the node
identities not permitted to join the network.

[P] NODE-050: It MUST be possible to specify the node whitelist through an interface. For
example, through a transaction into a smart contract, or through an API.

[P] NODE-060: It MUST be possible to specify the node blacklist (if implemented) through an
interface. For example, through a transaction into a smart contract, or through an API.

[P] NODE-070: Implementations MUST provide a way to certify the identities of nodes.

[P] PART-010: Implementations MUST provide the ability to specify a whitelist of participant
identities who are permitted to submit transactions.

[P] PART-020: Implementations MAY provide the ability to specify a blacklist of participant
identities who are not permitted to submit transactions.

[P] PART-030: It MUST be possible to specify the participant whitelist through an interface. For
example, through a transaction into a smart contract, or through an API.

[P] PART-040: It MUST be possible to specify the participant blacklist (if implemented) through
an interface. For example, through a transaction into a smart contract, or through an API.

EXAMPLE 4: Certifying Node Identities

Whitelisting a validating node by making a suitable entry in a dedicated smart contract, or
blacklisting a node by making a corresponding entry in another dedicated smart contract. An
alternative approach could be implementing a cost of gas enabling the private ether to be used
as a permissioning token.

[P] NODE-080: An Enterprise Ethereum client SHOULD provide mechanisms to define clusters of
nodes at the organizational level, in the context of permissioning.

6.1.2 Participants §

17 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[P] PART-050: Implementations MUST provide a mechanism to connect to an enterprise identity
management system in order to certify the identities of participants.

[P] PART-055 Implementations MUST support anonymous participants.

[P] PART-060: Implementations MUST provide the ability to specify participant identities in a way
aligned with the usual concepts of groups and roles.

[P] PART-070: Implementations SHOULD be able to authorize the types of transactions a
participant can submit, providing separate permissioning for the ability to:

Deploy a smart contract.

Call a function that changes the state of a smart contract.

Perform a simple value transfer.

[P] PERM-010: Implementations SHOULD provide permissioning schemes through standard
mechanisms, such as smart contracts used in a modular way. That is, permissioning schemes could
be implemented to interact with smart contract-based mechanisms.

[C] PERM-020: Implementations SHOULD provide the ability for configuration to be updated at
run time without the need to restart.

[C] PERM-030: Implementations MAY provide configuration through the use of flat files,
command-line options, or configuration management system interfaces.

[C] PERM-040: Implementations MAY support local key management allowing users to secure
their private keys.

[C] PERM-050: Implementations MAY support secure interaction with an external Key
Management System for key generation and secure key storage.

[C] PERM-060: Implementations MAY support secure interaction with a Hardware Security
Module (HSM) for deployments where higher security levels are needed.

6.1.3 Ethereum Accounts §

[P] ACCT-010: Implementations SHOULD provide the ability to specify a whitelist of the
Ethereum accounts permitted to be used on the blockchain.

[P] ACCT-020: It MUST be possible to specify the Ethereum account whitelist (if implemented)
through an interface. For example, through a transaction into a smart contract, or through an API.

6.1.4 Additional Permissioning Requirements §

18 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[E:D] ILIB-010: Implementations MAY provide integration libraries enabling convenience of
interaction through additional language bindings.

Enterprise-ready capabilities provide the ability to integrate with enterprise management systems
using common APIs, libraries, and techniques, as shown in Figure 3.

Figure 3 Management Interfaces

[E:O] ENTM-010: Implementations SHOULD provide enterprise-ready software deployment and
configuration capabilities, including the ability to easily:

Deploy through enterprise remote software deployment and configuration systems.

Modify configurations on already deployed systems.

Audit configurations on already deployed systems.

6.2 Integration and Deployment Tools Sublayer §

6.2.1 Integration Libraries §

EXAMPLE 5: Integration Libraries

Integration libraries might include [web3j], [web3.js], [Nethereum], [protocol-buffers], or a
REST API.

6.2.2 Enterprise Management Systems §

19 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[E:O] ENTM-020: Implementations SHOULD provide enterprise-ready software fault reporting
capabilities, including the ability to:

Log software fault conditions.

Generate events to notify of software fault conditions.

Accept diagnostic commands from software fault management systems.

[E:O] ENTM-030: Implementations MAY provide enterprise-ready performance management
capabilities, including the ability to easily provide relevant performance management metrics for
analysis by enterprise performance management systems.

[E:O] ENTM-040: Implementations SHOULD provide enterprise-ready security management
interaction capabilities, including the ability for logs, events, and secure network traffic to be
monitored by enterprise security management systems.

[E:O] ENTM-050: Implementations MAY provide enterprise-ready capabilities to support
historical analysis, including the ability for relevant metrics to be easily collected by an enterprise
data warehouse system for detailed historical analysis and creating analytical reports.

[E:O] ENTM-060: Implementations MAY include support for other enterprise management
systems, as appropriate, such as:

Common Management Information Protocol (CMIP)

Web-Based Enterprise Management (WBEM)

Application Service Management (ASM) instrumentation.

6.3 Client Interfaces Sublayer §

6.3.1 JSON-RPC

This section is non-normative.

[JSON] (JavaScript Object Notation) is a lightweight data-interchange format. [JSON] is a
language-independent text format that is easy for humans to read and write, and for systems to
parse and generate, making it ideal for exchanging data.

[JSON-RPC] is a stateless, light-weight remote procedure call (RPC) protocol using [JSON] as its
data format. The [JSON-RPC] specification defines several data structures and the rules around
their processing.

§

20 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

A JSON-RPC API is used to communicate between ÐApps and Ethereum clients.

[P] JRPC-010: Implementations MUST provide support for the following methods of the public
Ethereum JSON-RPC API:

net_version

net_peerCount

net_listening

eth_protocolVersion

eth_syncing

eth_coinbase

eth_hashrate

eth_gasPrice

eth_accounts

eth_blockNumber

eth_getBalance

eth_getStorageAt

eth_getTransactionCount

eth_getBlockTransactionCountByHash

eth_getBlockTransactionCountByNumber

eth_getCode

eth_sign

eth_sendRawTransaction

eth_call

eth_estimateGas

eth_getBlockByHash

eth_getBlockByNumber

eth_getTransactionByHash

eth_getTransactionByBlockHashAndIndex

eth_getTransactionByBlockNumberAndIndex

eth_getTransactionReceipt

6.3.2 Compatibility with the Core Ethereum JSON-RPC API §

21 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

eth_getUncleByBlockHashAndIndex

eth_getUncleByBlockNumberAndIndex

eth_getLogs.

[P] JRPC-007: [JSON-RPC-API] methods SHOULD be implemented to be backward compatible
with the definitions given in revision 328, unless breaking changes have been made and widely
implemented for the health of the ecosystem. For example, to fix a major security or privacy
problem.

[P] JRPC-011: Clients MAY provide implementations of other methods.

[C] JRPC-015: Clients MUST provide the capability to accept and respond to [JSON-RPC]
method calls over a websocket interface.

[C] JRPC-040: Clients MUST provide an implementation of the debug_traceTransaction

method [debug-traceTransaction] from the Go Ethereum Management API.

[C] JRPC-050: Clients MUST provide an implementation of the [JSON-RPC-PUB-SUB] API.

[C] JRPC-060: Clients MAY implement additional subscription types for the [JSON-RPC-PUB-
SUB] API.

[P] JRPC-070: Clients implementing additional nonstandard subscription types for the [JSON-
RPC-PUB-SUB] API MUST prefix their subscription type names with a namespace prefix other
than eea_.

6.3.3 Extensions to the JSON-RPC API

This section is experimental.

§

[P] JRPC-080: The [JSON-RPC] method name prefix eea_ MUST be reserved for future use for
RPC methods specific to the EEA.

[P] JRPC-020: Implementations MUST provide the eea_sendTransactionAsync and
eea_sendTransaction Enterprise Ethereum extension methods for at least one of the private
transaction types defined in Section 7.1.3 Private Transactions.

[P] JRPC-030: The eea_sendTransactionAsync and eea_sendTransaction methods
MUST respond with an HTTP 501 (Not Implemented) status code when an unimplemented private
transaction type is requested.

6.3.3.1 eea_sendTransactionAsync §

22 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

A call to eea_sendTransactionAsync creates a private transaction, signs it, submits it to the
transaction pool, and returns immediately.

Using this function allows sending many transactions without waiting for recipient confirmation.

Parameters

The transaction object for this call contains:

from DATA, 20 bytes – The address the transaction is sent from.

to DATA, 20 bytes – The address the transaction is sent to.

gas QUANTITY – Optional. The gas, as an integer, provided for the transaction. gasPrice

QUANTITY – Optional. The gas price, as an integer.

value QUANTITY – Optional. The value, as an integer, sent with this transaction.

data DATA, 20 bytes – Transaction data (compiled smart contract code or encoded function
data).

nonce QUANTITY – Optional. A nonce value, as an integer. This allows you to overwrite
your own pending transactions that use the same nonce.

privateFrom DATA, 20 bytes – The public key of the sender of this private transaction.

privateFor DATA – An array of the public keys of the intended recipients of this private
transaction.

restriction STRING – If restricted, the transaction is a restricted private transaction.
If unrestricted, the transaction is an unrestricted private transaction. For more
information, see Section 7.1.3 Private Transactions.

callbackUrl STRING – The URL to post the results of the transaction to.

Callback Body

NOTE

As in the public Ethereum [JSON-RPC-API], the two key datatypes for this call, which are
passed hex encoded, are unformatted data byte arrays (DATA) and quantities
(QUANTITY). When encoding unformatted data, encode as hex, prefix with "0x", and use
two hex digits per byte. When encoding quantities (integers and numbers), encode as hex
and prefix with "0x".

23 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

The callback object for this call contains:

txHash DATA, 32 bytes – The transaction hash (if successful).

txIndex QUANTITY - The index position, as an integer, of the transaction in the block.

blockHash DATA, 32 Bytes - The hash of the block this transaction was in. blockNumber

QUANTITY - The number of block, as an integer, this transaction was in. from DATA, 20

Bytes - The public key of the sender of this private transaction.

to DATA, 20 Bytes - The address of the receiver. null if a contract creation transaction.

cumulativeGasUsed QUANTITY - The total amount of gas used when this transaction was
executed in the block.

gasUsed QUANTITY - The amount of gas used by this specific transaction.

contractAddress DATA, 20 Bytes - The contract address created, if a contract creation
transaction, otherwise null.

logs Array - An array of log objects generated by this transaction.

logsBloom DATA, 256 Bytes - A bloom filter for light clients to quickly retrieve related logs.

error STRING – Optional. Includes an error message describing what went wrong.

id DATA – Optional. The ID of the request corresponding to this transaction, as provided in
the initial [JSON-RPC] call.

Also returned is either :

root DATA, 32 bytes - The post-transaction stateroot (pre-Byzantium).

status QUANTITY - The return status, either 1 (success) or 0 (failure).

Request Format

24 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Response Format

{
"id":1,
"jsonrpc": "2.0",
}

Callback Format

Creates a private transaction, signs it, generates the transaction hash and submits it to the
transaction pool, and returns the transaction hash.

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendTransactionAsync","params":[{
"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"gas": "0x76c0",
"gasPrice": "0x9184e72a000",
"value": "0x9184e72a",
"data":"0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb
"privateFrom": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"privateFor": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"callbackUrl": "http://myserver/id=1",
"restriction": "restricted"}],
"id":1}'

{
"txHash":
"0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331"
"txIndex": "0x1", // 1
"blockNumber": "0xb", // 11
"blockHash": "0xc6ef2fc5426d6ad6fd9e2a26abeab0aa2411b7ab17f30a99d3cb96aed
"cumulativeGasUsed": "0x33bc", // 13244
"gasUsed": "0x4dc", // 1244
"contractAddress": "0xb60e8dd61c5d32be8058bb8eb970870f07233155", // or nu
"logs": "[{
 // logs as returned by getFilterLogs, etc.
}, ...]",
"logsBloom": "0x00...0", // 256 byte bloom filter
"status": "0x1"
}

6.3.3.2 eea_sendTransaction §

25 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Parameters

The transaction object containing:

from DATA, 20 bytes – The address the transaction is sent from.

to DATA, 20 bytes – Optional when creating new contract. The address the transaction is sent
to.

gas QUANTITY – Optional. The gas, as an integer, provided for the transaction. gasPrice

QUANTITY – Optional. The gas price, as an integer.

value QUANTITY – Optional. The value, as an integer, sent with this transaction.

data DATA, 20 bytes – Transaction data (compiled smart contract code or encoded function
data).

nonce QUANTITY – Optional. A nonce value, as an integer. This allows you to overwrite
your own pending transactions that use the same nonce.

privateFrom DATA, 20 bytes – The public key of the sender of this private transaction.

privateFor DATA – An array of the public keys of the intended recipients of this private
transaction.

restriction STRING – If restricted, the transaction is a restricted private transaction. If
unrestricted the transaction is an unrestricted private transaction. For more information,
see Section 7.1.3 Private Transactions.

Returns

DATA, 32 Bytes - The transaction hash, or the zero hash if the transaction is not yet available.

If creating a contract, use eth_getTransactionReceipt to retrieve the contract address after
the transaction is finalized.

Request Format

NOTE

As in the public Ethereum [JSON-RPC-API], the two key datatypes for this call, which are
passed hex encoded, are unformatted data byte arrays (DATA) and quantities
(QUANTITY). When encoding unformatted data, encode as hex, prefix with "0x", and use
two hex digits per byte. When encoding quantities (integers and numbers), encode as hex
and prefix with "0x".

26 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Response Format

A call to eea_clientCapabilities provides more information about the capabilities supported
by the client. This call returns the private transaction restriction levels and the kinds of consensus
mechanisms supported.

Parameters

None.

Returns

This call returns client capability information fields in the format of [JSON] name values pairs:

consensus : ["PoW", "IBFT" , "Raft"]

restriction: ["restricted", "unrestricted"]

Request Format

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_sendTransaction","params": [{
"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"to": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"gas": "0x76c0",
"gasPrice": "0x9184e72a000",
"value": "0x9184e72a",
"data":
"0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb9708
"privateFrom": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",
"privateFor": "0xd46e8dd67c5d32be8058bb8eb970870f072445675",
"restriction": "restricted"}],
"id":1}'

{
"id":1,
"jsonrpc": "2.0",
"result": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527
}

curl -X POST --data
'{"jsonrpc":"2.0","method":"eea_clientCapabilities","params":[],"id":1}'

6.3.3.3 eea_clientCapabilities §

27 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Response Format

{
"id":1,
"jsonrpc": "2.0",
"result": [{"consensus": ["PoW", "IBFT" , "Raft"]},
{"restriction": ["restricted", "unrestricted"]} }

6.3.4 Network Permissioning Using Smart Contracts

This section is experimental.

This section presents a collection of smart contract interfaces to achieve network permissioning.

This permissioning model consists of networks, participant groups, and participants. A network is a
collection of enterprises wishing to interact using an Enterprise Ethereum blockchain. Each
enterprise is represented as a participant group with an accompanying list of client nodes belonging
to that enterprise.

A participant group can have client nodes added or removed from it's node list. After a client node
is added to a participant group's node list, that client node is allowed to join and become part of the
Enterprise Ethereum blockchain network.

Node permissioning on the network is therefore achieved by deciding which participant groups can
join and which must leave the network. If a participant group joins the network, the nodes
accompanying that participant group are permitted to join. Conversely, if a participant group must
leave the network, the nodes accompanying that participant group are disconnected from the
network.

Participant groups are a collection of participants. Each participant has individually specified
permissions. The permissions reflect the different ways the participant can act on behalf of the
participant group. A participant corresponds to a single person or agent allowed to administer the
network. A participant is represented by one or more Ethereum addresses.

Participants originate changes (mutations), such as adding a new participant to a participant group,
adding a new client node to a participant group's node list, or inviting other participant groups to
join the network.

A decider function is used to decide, based on the number of invitations for a specific participant
group, whether or not the participant group is permitted to join the network. The decider also
determines when to evict a member and especially when the decider should be changed, so that the
network logic can change.

§

28 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Node whitelisting is achieved in this model by participant groups (that is, enterprises) determining
which client nodes are added to the client node list for their participant group. Node blacklisting
can be achieved using the methods described in Section 6.3.4.5 Node Blacklisting.

In this permissioning model there are four fundamental smart contract interfaces:

Participant

ParticipantGroup

Network

PermissioningDecider.

The Participant smart contract contains participants initialized with a name and an identifier,
like an email address. Additional information, such as alternative contact information or PGP
public keys, could also be included by implementations of Participant.

[P] PERM-070: Implementations MUST provide the Participant, ParticipantGroup,
Network, and PermissioningDecider Enterprise Ethereum smart contract interfaces, as
described in the following sections.

6.3.4.1 Participant §

29 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

pragma solidity ^0.4.24;

interface Participant {
// Metadata

// Retrieve the participant name.
function getName() external view returns (string);

// Retrieve the participant identifier.
function getId() external view returns (string);

// Authorization mutation.

// Add an Ethereum account address to a participant. Multiple addresses
// can be added.
function addAddress(address _owner) external;

// Remove an Ethereum account address from a participant.
function removeAddress(address _owner) external;

// Authorization queries.

// Check if the participant owns a specific Ethereum account address.
function owns(address _owner) external view returns (bool);

// Network of trust (reputation) mutators.

// Check if the participant vouches for another (child) participant.
function hasEndorsed(Participant _child) external view returns (bool);

// Set the participant as vouching for (endorsing) a (child) participant.
function endorse(Participant _child) external;

// Set the participant as no longer vouching for (not endorsing) a (child
// participant.
function unendorse(Participant _child) external;

// Network of trust backlinks. These should be called by `endorse` and
// `unendorse` implementations respectively, to provide pointers about wh
// to look for endorsements.

// Set the (parent) participant as vouching for the participant.
function recordEndorsement(Participant _parent) external;

// Set the (parent) participant to no longer vouch for the participant.
function eraseEndorsement(Participant _parent) external;}

30 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Each Participant can have multiple Ethereum addresses to guard against key loss. A graph of
endorsements is present to establish trust.

How authentication happens is up to the users, typically depending on the relationship between the
endorser and the endorsee. Some example authentication mechanisms could be:

alice@a.net sends an email to bob@a.net, asking to confirm Bob's participant address.

alice@a.net sends an email to bob@b.com (note the different domain address), asking Bob to
join a video call to assert his ownership of the Ethereum account.

Alice walks over to Bob's desk and asks what his participant address is.

NOTE

Any caller can add any address as a parent of a participant. To authenticate a participant,
parent links must be followed and the corresponding child link must be present.

6.3.4.2 ParticipantGroup

The ParticipantGroup smart contract represents a group of participants and their permissions.

§

31 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

The addParticipant function grants permissions as follows. The requester chooses which
permissions to grant to an object, but cannot grant permissions it does not have itself. Effectively,
this means the actual permissions are the bitwise AND of the requester's permissions and the

pragma solidity ^0.4.24;

import "./Participant.sol";
interface ParticipantGroup {
// Metadata

// Retrieve the participant group name.
function getName() external view returns (string);

// Member queries

// Retrieve the permissions for the participant.
function permission(Participant) external view returns (uint);

// Member enumeration

// Retrieve the number of participants in the participant group.
function memberCount() external view returns (uint);

// Retrieve a participant, specified by index, from the participant group
function getMember(uint idx) external view returns (Participant);

// Membership mutation

// Add a participant to the participant group. Requester must have
// `CAN_ADD_PARTICIPANT` permission.
function addParticipant(Participant requester, Participant object,

 uint _permission) external;

// Remove a participant from the participant group. Requester must have
// `CAN_REMOVE_PARTICIPANT` permission.
function removeParticipant(Participant requester,

 Participant object) external;

// Events

// Emitted when a participant is added to a participant group.
event MemberAdded(Participant _participant, uint _permission);

// Emitted when a participant is removed from a participant group.
event MemberRemoved(Participant _participant, uint _permission);}

32 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

_permission parameter. The permissions reflect the different ways participants in a participant
group can act on behalf of the the participant group.

The following is an example permissions list smart contract.

pragma solidity ^0.4.24;

contract Permissions {
// Abilities to change the membership of a participant group.
uint constant public CAN_ADD_PARTICIPANT = 0x1;
uint constant public CAN_REMOVE_PARTICIPANT = 0x2;

// Abilities to change the node inventory of a participant group.
uint constant public CAN_ADD_NODE = 0x4;
uint constant public CAN_REMOVE_NODE = 0x8;

// Abilities to vote on behalf of a participant group for other
// participant groups to join the network.
uint constant public CAN_INVITE_PARTICIPANTGROUP = 0x10;
uint constant public CAN_UNINVITE_PARTICIPANTGROUP = 0x20;

// Abilities to vote on behalf of a participant group for a new rule
// engine.
uint constant public CAN_PROPOSE_DECIDER = 0x100;

uint constant public ADMIN = 0x1ff;
function meets(uint have, uint needed) public pure returns (bool) {

 return have & needed == needed;
}}

As described above, networks are a collection of participant groups. Each participant group
supplies a list of client nodes as [enode] URLs, with the intent that the Network smart contract is
used as a permissions model for client nodes (servers) allowed to connect to the Enterprise
Ethereum blockchain. If a participant group belongs to a network, any participant with the
CAN_ADD_NODE permission can add to the client node list for that participant group. Each
participant group has autonomy over the nodes it has running in the network.

To add a participant group to the network, every participant group that is already a member of the
network can vote to invite or uninvite the participant group. These two functions record the
desire of the participant group, but it is up to the permissioning decider to choose when to update
the network roster.

6.3.4.3 Network §

33 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Participant groups can have WRITE or READ permissions in the context of a network, which dictates
the permissions of the client nodes belonging to that participant group. Transactions to the actual
blockchain network are only to be accepted by client nodes belonging to participant groups with
WRITE permission in the Network smart contract representing it.

34 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

pragma solidity ^0.4.24;

import "./ParticipantGroup.sol";
import "./Participant.sol";
import "./PermissioningDecider.sol";
interface Network {
// Node queries.

// Retrieve the participant group the node is part of.
function participantGroupOf(string _node) external view

 returns (ParticipantGroup);

// Retrieve the number of nodes in the participant group.
function participantGroupsNodeCount(ParticipantGroup) external view

 returns (uint);

// Retrieve a node, specified by index, from the participant group.
function participantGroupsNode(ParticipantGroup, uint idx) external view

 returns (string);

// Authorization queries.

// Retrieve the permissions for the participant group.
function permission(ParticipantGroup) external view returns (uint);

// Check if the node has `READ` permission in the context of the network.
function checkRead(string _node) external view returns (bool);

// Check if the node has `WRITE` permission in the context of the network
function checkWrite(string _node) external view returns (bool);

// Group specific administration.

// Add a node to a participant group. Participant must have `CAN_ADD_NODE
// permission.
function addNode(ParticipantGroup, Participant, string _node) external;

// Remove a node from a participant group. Participant must have
// `CAN_REMOVE_NODE` permission.
function removeNode(ParticipantGroup, Participant, string _node) external

// Group membership queries.

// Retrieve the number of participant groups.
function participantGroupCount() external view returns (uint);

// Retrieve a participant group, specified by index, from the participant

35 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

// groups.
function getParticipantGroup(uint idx) external view

 returns (ParticipantGroup);

// Group membership vote counts.

// Retrieve the number of invites for the participant group to have `READ
// permissions in the context of the network.
function readInvitesReceived(ParticipantGroup) external view

 returns (uint);

// Retrieve the number of invites for the participant group to have `WRIT
// permissions in the context of the network.
function writeInvitesReceived(ParticipantGroup) external view

 returns (uint);

// Retrieve the number of uninvites for the participant group to leave th
// network.
function uninvitesReceived(ParticipantGroup) external view returns (uint)

// Group membership mutators.

// Invite a participant group to join the network. Participant must have
// `CAN_INVITE_PARTICIPANTGROUP` permission.
function invite(ParticipantGroup _invitee, ParticipantGroup _ginviter,

 Participant _uinviter, string _node, uint _perm) ex

// Uninvite a participant group from the network. Participant must have
// `CAN_UNINVITE_PARTICIPANTGROUP` permission.
function uninvite(ParticipantGroup _invitee, ParticipantGroup _ginviter,

 Participant _uinviter) external;

// Rule inspection.

// Retrieve the permission decider function currently in use.
function decider() external view returns (PermissioningDecider);

// Rule vote counts.

// Retrieve the number of votes received for the permissioning decider.
function deciderVotesReceived(PermissioningDecider) external view

 returns (uint);

// Retrieve the permissioning decider nominated by the participant group.
// Useful for admin weighting.
function nominatedDecider(ParticipantGroup) external view

 returns (PermissioningDecider);

36 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

The PermissioningDeciders smart contract customizes the bylaws of a Network smart
contract.

// Rule engine mutator.

// Propose a new permissioning decider.
function proposeDecider(PermissioningDecider _next,

 ParticipantGroup _gproposer, Participant _upr
 external;

// Emitted events.

// A node was added to a participant group.
event NodeAdded(ParticipantGroup _participant_group, string _node);

// A node was removed from a participant group.
event NodeRemoved(ParticipantGroup _partcipant_group, string _node);

// A participant has invited a participant group to join the network.
event ParticipantGroupInvited(ParticipantGroup _participant_group,

 uint _permission);

// A participant has uninvited a participant group from the network.
event ParticipantGroupUnInvited(ParticipantGroup _participant_group,

 uint _permission);

// A participant group was added to the network.
event ParticipantGroupAdded(ParticipantGroup _participant_group,

 uint _permission);

// A participant group was removed from the network.
event ParticipantGroupRemoved(ParticipantGroup _participant_group,

 uint _permission);

// A permission decider function was swapped to a new one.
event DeciderSwapped(PermissioningDecider _old, PermissioningDecider _new

Implementations of Network are required to authorize on mutators (invite, uninvite,
proposeDecider, addNode, removeNode). The granularity of permissions is implementation
dependent.

6.3.4.4 PermissioningDecider §

37 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

pragma solidity ^0.4.24;

import "./ParticipantGroup.sol";
import "./Network.sol";
interface PermissioningDecider {
// The permission the participant group now has, if approved.
function inviteApproved(Network, ParticipantGroup) external view

 returns (uint8);

// Whether the network should remove the participant group.
function inviteRevoked(Network, ParticipantGroup) external view

 returns (bool);

// Whether the network should change its permissioning decider.
function swapDecider(Network, PermissioningDecider) external view

 returns (bool);}

Some example PermissioningDeciders include:

Static: ParticipantGroups are never removed or added from the Network, and the
PermissioningDecider never changes.

AutoApprove: ParticipantGroups are automatically included (or removed) when invited
(or uninvited). The decider swaps the first time it is asked.

AdminRun: The Network has an administrator group, which is the only vote counted for
approving or revoking approval of a ParticipantGroup, or changing the
PermissionDecider.

MajorityRules: A prospective ParticipantGroup needs more than half of the current
ParticipantGroups to invite it for membership. A prospective PermissioningDecider
needs more than half of the current groups to nominate it before this Decider relinquishes
control.

Node blacklisting at the participant group level (that is, within an enterprise) is achieved by
including the following additional functions in the `ParticipantGroup` smart contract.

6.3.4.5 Node Blacklisting §

38 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

interface ParticipantGroup {

...
// Add a participant within the participant group to the blacklist.
function blacklistNode(Participant, string _node) interface;

// Remove a participant within the participant group from the blacklist.
function unblacklistNode(Participant, string _node) interface;
...}

Blacklisting of client nodes belonging to another participant group (that is, another enterprise) in
the network is achieved by including the following functions in the Network and
PermissioningDecider smart contracts.

interface Network {

...
// Vote to add a participant in another participant group to the blacklis
voteToBlacklist(ParticipantGroup, Participant, string _node) external;

// Vote to remove a participant in another participant group from the
// blacklist.
voteToUnblacklist(ParticipantGroup, Participant, string _node) external;

// Retrieve the number of votes for the node to be added to the blacklist
blacklistVotesReceived(string _node) external view returns (uint);

// Retrieve the number of votes for the node to be removed from the
// blacklist.
unblacklistVotesReceived(string _node) external view returns (uint);

// Emitted when a node is added to the blacklist.
event NodeBlacklisted(ParticipantGroup _participant_group, string _node);

// Emitted when a node is removed from the blacklist.
event NodeUnblacklisted(ParticipantGroup _participant_group, string _node
...}

39 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

interface PermissioningDecider {

...
// Whether the node should be added to the blacklist.
function blacklistApproved(Network, string _node) external view

 returns (bool);

// Returns whether the node should be removed from the blacklist.
function unblacklistApproved(Network, string _node) external view

 returns (bool);
...

}

In many situations, smart contracts need to interact with real-world information to operate. Oracles
securely bridge the data-gap from the smart contract to the real-world information source.

[C] ORCL-010: Enterprise Ethereum implementations SHOULD provide the ability to securely
interact with oracles to send and receive real-world information.

Privacy, in the context of this Specification, refers to the ability to keep data confidential between
parties privy to that transaction and to choose which details to provide about a party to one or more
other parties.

6.3.5 Inter-chain §

With the rapid expansion in the number of different blockchains and ledgers, inter-chain mediators
are necessary to allow interaction between blockchains. Like other enterprise solutions that include
privacy and scalability, inter-chain mediators can be Layer 2, such as using public Ethereum to
anchor (or peg) state needed to track and checkpoint state.

[E] ICHN-010: Enterprise Ethereum implementations MAY provide inter-chain mediation
capabilities to enable interaction with different blockchains.

6.3.6 Oracles §

7. Privacy and Scaling Layer §

7.1 Privacy Sublayer §

40 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Various on-chain techniques are proposed to improve the security and privacy capabilities of
networks.

Many users and operators of Enterprise Ethereum implementations are required by their legal
jurisdictions to comply with laws and regulations related to privacy. For example, banks in the
European Union are required to comply with the European Union revised Payment Services
Directive [PSD2] when providing payment services, and the General Data Protection Regulation
[GDPR] when storing personal data regarding individuals. Users of Enterprise Ethereum signal
their intent as to privacy requirements when they send a transaction by utilizing a parameter on the
[JSON-RPC-API] calls. The parameter indicates the preferred transaction type at runtime. This
section defines two transaction types to be used for different privacy requirements:

Restricted private transactions

Enterprise Ethereum implementations are expected to provide some level of transaction privacy.
Privacy can be realized at various levels including the peer node connectivity permissioning and
user-level permissioning, controlling which nodes see private transactions, and obfuscating
transaction data. Options for implementing compliant privacy levels are detailed in Section 7.1.4
Privacy Levels

7.1.1 On-chain §

NOTE: On-chain Security Techniques

Future on-chain security techniques could include techniques such as ZK-SNARKS, range
proofs, or ring signatures.

Private transactions are an example of future work to support privacy requirements.

7.1.2 Off-chain (Trusted Computing) §

Off-chain Trusted Computing, coupled to a blockchain as an off-chain processing environment, can
help provide secure, efficient, and scalable processing for transactions and smart contracts as well
as ensuring privacy of sensitive contact data.

[C] OFFCH-010: Enterprise Ethereum implementations MAY provide the ability for off-chain,
trusted execution of transactions and smart contracts.

7.1.3 Private Transactions §

41 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Unrestricted private transactions.

Transaction information consists of two parts, metadata and payload data. Metadata is the envelope
information necessary to execute a transaction. Payload data is the transaction contents.

[P] PRIV-010: Implementations MUST support private transactions using at least one of the
following methods:

Private transactions where payload data is transmitted to and readable only by the direct
participants of a transaction. These transactions are referred to as restricted private
transactions.

Private transactions where payload data is transmitted to all nodes participating in the network
but readable only by the direct participants of a transaction. These transactions are referred to
as unrestricted private transactions.

When implementing restricted private transactions:

[P] PRIV-020: Implementations MUST support masking or obfuscation of the payload data
when stored in restricted private transactions (for example, using cryptographic encryption).

[P] PRIV-030: Implementations MUST support masking or obfuscation of the payload data
when in transit in restricted private transactions (for example, using cryptographic
encryption).

[P] PRIV-040: Implementations MAY support masking or obfuscation of the metadata when
stored in restricted private transactions (for example, using cryptographic encryption).

[P] PRIV-050: Implementations MAY support masking or obfuscation of the metadata when
in transit in restricted private transactions (for example, using cryptographic encryption).

[P] PRIV-060: Nodes that relay a restricted private transaction but are not participants in that
transaction MUST NOT store transaction payload data.

[P] PRIV-070: Nodes that relay a restricted private transaction but are not participants in that
transaction SHOULD NOT store transaction metadata.

[P] PRIV-080: The implementation of the [[JSON RPC API]]
eea_sendTransactionAsync or eea_sendTransaction methods (if implemented) with
the restriction parameter set to restricted, MUST result in a restricted private transaction.

42 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

When implementing unrestricted private transactions:

[P] PRIV-090: Implementations SHOULD support masking or obfuscation of the recipient
identity when stored in unrestricted private transactions (for example, using cryptographic
encryption, or ring signatures and mixing).

[P] PRIV-100: Implementations SHOULD support masking or obfuscation of the sender
identity when stored in unrestricted private transactions (for example, using stealth addresses).

[P] PRIV-110: Implementations SHOULD support masking or obfuscation of the payload
data when stored in unrestricted private transactions (for example, using cryptographic
encryption).

[P] PRIV-120: Implementations MUST support masking or obfuscation of the payload data
when in transit in unrestricted private transactions (for example, using cryptographic
encryption).

[P] PRIV-130: Implementations MAY support masking or obfuscation of the metadata when
stored in unrestricted private transactions (for example, using cryptographic encryption).

[P] PRIV-140: Implementations MAY support masking or obfuscation of the metadata when
in transit in unrestricted private transactions (for example, using cryptographic encryption).

[P] PRIV-150: Nodes that relay an unrestricted private transaction but are not participants in
that transaction MAY store payload data.

[P] PRIV-160: Nodes that relay an unrestricted private transaction but are not participants in
that transaction MAY store transaction metadata.

[P] PRIV-170: The implementation of the [[JSON RPC API]]
eea_sendTransactionAsync or eea_sendTransaction methods (if implemented) with
the restriction parameter set to unrestricted MUST result in an unrestricted private
transaction.

EXAMPLE 6: Restricted Private Transactions

Private transactions can be implemented by creating private channels, or private smart contracts
where the payload data is only stored within the nodes participating in a transaction, and not in
any other node (despite that the payload data might be encrypted and only decodable by
authorized parties). Private transactions are kept private between related parties, so unrelated
parties have no access to the content of the transaction, the sending party, or the list of
participating addresses. In fact, a private smart contract has a similar relationship to the
blockchain that hosts it as a private blockchain network that is only replicated and certified by a
subset of participating nodes, but is notarized and synchronized on the hosting blockchain. This
private blockchain is thus able to refer to data in less restrictive private smart contracts, as well
as in public smart contracts.

43 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[P] PRIV-180: Implementations SHOULD be able to extend the set of participants in a private
transaction (or forward the private transaction in some way).

[P] PRIV-190: Implementations SHOULD provide the ability for nodes to achieve consensus on
their mutually private transactions.

EXAMPLE 7: Unrestricted Private Transactions

Obfuscated data that is replicated across all nodes can be reconstructed from any node, albeit in
encrypted form. Mathematical transactions on numerical data are intended to be validated by
the underlying network on a zero-knowledge basis, only to be accessed verbatim by
participating parties to the transaction. Specifically, a client is expected to have the ability to
maintain and transact against numerical balances certified by the whole community of
validators on a zero-knowledge basis. An alternative to the zero-knowledge approach could be
the combined use of ring signatures, stealth addresses, and mixing, which is demonstrated to
provide the necessary level of obfuscation that is mathematically impossible to penetrate and
does not rely on the trusted setup required by ZK-SNARKS.

NOTE: Restricted vs Unrestricted Private Transactions

The differences between restricted and unrestricted private transactions are summarized in
the table below.

Table 2 Restricted and Unrestricted Private Transactions

Restricted Private TXNs (if implemented)
Unrestricted Private TXNs (if
implemented)

Metadata Payload Data Metadata Payload Data

MAY mask or
obfuscate

MUST mask or
obfuscate

MAY mask or
obfuscate

SHOULD mask or
obfuscate sender and
recipient identity

MUST mask or
obfuscate in
transit

SHOULD mask
or obfuscate in
storage

SHOULD NOT allow
storage by non-
participating nodes

MUST NOT allow
storage by non-
participating nodes

MAY allow storage by
non-participating
nodes

MAY allow
storage by non-
participating
nodes

44 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[P] PRIV-200: Implementations SHOULD be able to authorize the types of transactions an
Ethereum Account can submit, providing separate permissioning for the ability to:

Deploy a smart contract.

Call a function that changes the state of a smart contract.

Perform a simple value transfer.

Implementations can support different levels of privacy, as outlined in Table 3 below, and still
comply with this Specification. Because permissioning and privacy are interrelated concepts, the
privacy levels specified contain requirements related to both the permissioning and privacy sections
of this Specification.

Privacy Level C is the base privacy level for all compliant implementations. To comply with
Privacy Level C, implementations have to comply with all MUST and MUST NOT requirements of
this Specification. The requirements specifically related to permissioning are the MUST peer node
connectivity and user-level permissioning requirements in Sections 6.1.1 Nodes and 6.1.2
Participants. Implementations have a choice when complying with privacy requirements. To
comply with Privacy Level C, implementations are required to comply with all the MUST and
MUST NOT requirements in Section 7.1.3 Private Transactions related to either restricted private
transactions or unrestricted private transactions.

Supporting specific SHOULD requirements increases the privacy and permissioning abilities for an
implementation and are thus recognized as having specific value to users.

Privacy Level B is obtained by providing support for the requirements of Privacy Level C, plus
implementing all the SHOULD requirements related to peer node connectivity and user-level
permissioning requirements in Sections 6.1.1 Nodes, 6.1.2 Participants, and 6.1.4 Additional
Permissioning Requirements. Implementations obtaining Privacy Level B demonstrate increased
interoperability with the public Ethereum ecosystem and other Enterprise Ethereum
implementations.

Privacy Level A is obtained by providing support for Privacy Level B, plus implementing all the
SHOULD and SHOULD NOT requirements in Section 7.1.3 Private Transactions. Implementations
obtaining Privacy Level A demonstrate increased security and privacy protections for their users.
Privacy Level A is considered best practice for Enterprise Ethereum implementations and its
attainment is highly encouraged.

EEA certification programs will recognize implementations as providing support for Privacy
Levels A, B, or C. Certificates of Certification are subject to the unique requirements of EEA-
approved vertical business segments.

7.1.4 Privacy Levels §

45 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Table 3 Summary of Privacy Levels

Privacy Level Description Definition

A
Best practice
privacy and
permissioning

Implementations provide support for Privacy Level B and all the
SHOULD and SHOULD NOT requirements in Section 7.1.3
Private Transactions.

B
Best practice
permissioning

Implementations provide support for Privacy Level C and all the
SHOULD peer node connectivity and permissioning
requirements from Sections 6.1.1 Nodes, 6.1.2 Participants, and
6.1.4 Additional Permissioning Requirements.

C
Baseline
privacy and
permissioning

Implementations provide support for all the MUST peer node
connectivity and permissioning requirements from Sections 6.1.1
Nodes and 6.1.2 Participants, and either:

All the MUST and MUST NOT restricted private transaction
requirements in Section 7.1.3 Private Transactions.

All the MUST and MUST NOT unrestricted private
transaction requirements in Section 7.1.3 Private
Transactions.

Off-chain scaling at layer 2 improves the capability to handle more transactions but without
changing the underlying Ethereum protocol.

[P] SCAL-010: Enterprise Ethereum implementations SHOULD provide the ability for improved
on-chain processing rates of transactions and smart contracts using layer 1 and layer 2 solutions.

7.2 Scaling Sublayer §

Enterprise Ethereum networks will likely have demands placed on them to handle higher volume
transaction rates and potentially computationally heavy tasks. Various scaling methods can be
employed to increase transaction processing rates.

7.2.1 On-chain (Layer 1) §

On-chain scaling at layer 1 improves the capability to handle more transactions by changing the
underlying Ethereum protocol.

7.2.2 On-chain (Layer 2) §

46 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Performance refers to the overall performance of the network. Ideally, increased usage of the
network does not degrade its performance.

EEA certification programs will recognize implementations as providing support for enterprise-
appropriate transaction rates based on the needs of EEA-approved vertical business segments.

[P] STOR-010: Enterprise Ethereum implementations SHOULD implement data storage
requirements necessary to operate a public Ethereum client.

[C] STOR-020: Implementations MAY implement data storage used for optional off-chain
operations. For example, implementations can locally choose to cache the results from a trusted
oracle or store information related to systems extensions beyond the scope of this Specification.

[C] STOR-030: Implementations providing support for multiple networks (for example, one or
more consortium networks or a public network) MUST store data related to private transactions for
those networks in private state dedicated to the relevant network.

[P] STOR-040: A smart contract operating on private state SHOULD be permitted to access
private state created by other smart contracts involving the same participants.

[P] STOR-050: A smart contract operating on private state MUST NOT be permitted to access
private state created by other smart contracts involving different participants.

§7.2.3 Off-chain (Compute)

Off-chain scaling moves some of the processing burden from the underlying blockchain network.

[C] SCAL-020: Enterprise Ethereum implementations SHOULD provide the ability for off-chain
processing of transactions and smart contracts.

7.2.4 Performance §

EXAMPLE 8: EEA Certification

Certificates of Certification might require minimum transaction rates in terms of [ERC-20]
smart contract executions per second, or other measures.

8. Core Blockchain Layer §

8.1 Storage and Ledger Sublayer §

47 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[P] STOR-060: Implementations SHOULD provide the ability for private smart contracts to store
file objects seamlessly and transparently, so no artificial off-chain file-storage add-ons are needed.

[P] STOR-070: If an implementation stores the private blockchain state persistently, it SHOULD
protect the data using an Authenticated Encryption with Additional Data (AEAD) algorithm, such
as one described in [RFC5116].

[P] EXEC-010: Enterprise Ethereum implementations MUST provide a smart contract execution
environment implementing the public Ethereum EVM op-code set [EVM-Opcodes].

[P] EXEC-020: Enterprise Ethereum implementations MAY provide a smart contract execution
environment extending the public Ethereum EVM op-code set [EVM-Opcodes].

[P] EXEC-030: Implementations SHOULD support the ability to synchronize their public state
with the public state held by other public Ethereum nodes.

[P] EXEC-040: Implementations SHOULD provide support for the compilation, storage, and
execution of precompiled contracts.

Trusted Computing ensures only authorized parties can execute smart contracts on an execution
environment related to a given consortium network.

[C] EXEC-050: Implementations MAY offer support for Trusted Computing.

Multiple encryption techniques can be used to secure Trusted Computing and private state.

[C] EXEC-060: Implementations SHOULD provide configurable encryption options for use in
conjunction with consortium networks.

EXAMPLE 9: Storing File Objects

Implementations might choose to provide additional APIs outside this Specification (such as
the WebDAV protocol described in [RFC4918]) for interaction with file objects.

8.1.1 Finality §

[P] FINL-010: When a deterministic consensus algorithm is used, transactions SHOULD be
considered final after a defined interval or event. For example, a set time period or a set number of
blocks created since the transaction was included in a block.

8.2 Execution Sublayer §

48 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[P] CONS-020: Implementations MUST be capable of supporting multiple consensus algorithms.

[P] CONS-030: One or more consensus algorithms SHOULD allow operations as part of an
Enterprise Ethereum network.

[P] CONS-050: One or more consensus algorithms MAY support operations on sidechain
networks.

[P] CONS-080: Consensus algorithms MAY communicate in-band or out-of-band with other
clients, as requested. That is, consensus algorithm implementations can make and receive network
traffic external to the client-to-client network protocol.

[P] CONS-100: Implementations MAY support other consensus algorithms.

[P] CONS-110: Implementations MUST provide the ability to specify the consensus algorithms,
through configuration, to be used for each public blockchain, private blockchain, and sidechain in
use.

Network protocols define how nodes communicate with each other.

[P] PROT-010: Nodes MUST be identified and advertised using the Ethereum enode URL format
[enode].

[P] PROT-020: Implementations SHOULD use the DEVp2p Wire Protocol [DEVp2p-Wire-
Protocol] for messaging between nodes to establish and maintain a communications channel for
use by higher layer protocols. These higher layer protocols are known as capability protocols.

The [Ethereum-Wire-Protocol] defines the capability protocols for messaging between Ethereum
client nodes to exchange status, including block and transaction information. [Ethereum-Wire-
Protocol] messages are sent and received over an already established DEVp2p connection between
nodes.

[P] PROT-030: Implementations SHOULD support, at a minimum, the eth/62 and eth/63
[Ethereum-Wire-Protocol] implementations.

[P] PROT-040: Implementations MAY add new protocols or extend existing Ethereum protocols.

8.3 Consensus Sublayer §

9. Network Layer §

9.1 Network Protocol Sublayer §

49 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[P] PROT-050: To minimize the number of point-to-point connections needed between private
nodes, some private nodes SHOULD be capable of relaying private transaction data to multiple
other private nodes.

[P] PROT-060: Implementations SHOULD implement the Whisper protocol [Whisper-protocol].

This section refers to mechanisms to prevent the network being degraded with a flood of
intentional or unintentional transactions. This might be realized through interfacing with an
external security manager, as described in Section 6.2.2 Enterprise Management Systems, or
implemented by the Enterprise Ethereum client, as described in the following requirement.

[P] SPAM-010: Enterprise Ethereum implementations SHOULD provide effective anti-spam
mechanisms so attacking nodes or addresses (either malicious, buggy, or uncontrolled) can be
quickly identified and stopped.

Cross-client compatibility refers to the ability of a network to operate with different clients.

EXAMPLE 10: Relaying Private Transaction Data

Multi-party private smart contracts and transactions do not require direct connectivity between
all parties because this is very impractical in enterprise settings, especially when many parties
are allowed to transact. Common nodes to all parties (for example, voters or blockmakers
acting as bootnodes to all parties, and as backup or disaster recovery nodes) are intended to
function as gateways to synchronize private smart contracts transparently. Transactions on
private smart contracts could then be transmitted to all participating parties in the same way.

10. Anti-Spam §

EXAMPLE 11: Anti-spam Mechanisms

Anti-spam mechanisms might include:

Stopping parties attempting to issue transactions above a threshold volume.

Providing a mechanism to enforce a cost for gas, so transacting parties have to acquire and
pay for (or destruct) private ether to transact.

Having a dynamic cost of gas based on activity intensity.

11. Cross-client Compatibility §

50 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[P] XCLI-010: Enterprise Ethereum clients SHOULD be compatible with the public Ethereum
network to the greatest extent possible.

The requirements relating to supporting and extending the public Ethereum opcode set are outlined
in Section 8.2 Execution Sublayer.

[P] XCLI-020: Implementations MAY extend the public Ethereum APIs. To maintain
compatibility, implementations SHOULD ensure these new features are a superset of the public
Ethereum APIs.

[P] XCLI-030: Enterprise Ethereum clients MUST implement the Gas mechanism specified in the
[Ethereum-Yellow-Paper].

[P] XCLI-040: Gas price MAY be set to zero.

[P] XCLI-050: Enterprise Ethereum clients MUST implement the eight precompile contracts
defined in Appendix E of the [Ethereum-Yellow-Paper]:

ecrecover

sha256hash

ripemd160hash

dataCopy

bigModExp

bn256Add

bn256ScalarMul

bn256Pairing

EXAMPLE 12: Extensions to the Public Ethereum API

Extensions to public Ethereum APIs could include enterprise peer-to-peer APIs, the
[JSON-RPC-API] over IPC, HTTP/HTTPS, or websockets.

NOTE

Sample [implementation-code-in-Golang], as part of the Go-Ethereum client is available
from the Go-Ethereum source repository [geth-repo].

Be aware this code uses a combination of GPL3 and LGPL3 licenses

51 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Cross-client compatibility extends to the different message encoding formats used by Ethereum
clients.

XCLI-060: Enterprise Ethereum clients MUST support the Contract Application Binary Interface
([ABI]) for interacting with smart contracts.

XCLI-070: Enterprise Ethereum clients MUST support Recursive Length Prefix ([RLP]) encoding
for binary data.

Synchronization and disaster recovery refers to how nodes in a network behave when connecting
for the first time or reconnecting.

Various techniques can help do this efficiently. For an Enterprise Ethereum chain with few copies,
off-chain backup information can be important to ensure the long-term existence of the information
stored. A common backup format helps increase client interoperability.

Table 4 Terms and Definitions

Term Definition

Client
The Enterprise Ethereum client software running on a node in a blockchain
network. A client implements Enterprise Ethereum extensions.

Configuration
The settings made by a system operator, such as which consensus algorithm to
use or which blockchain to join.

Consensus
Nodes on the blockchain reaching agreement about the current state of the
blockchain.

Consensus
Algorithm

An algorithm by which a given blockchain achieves consensus prior to an action
being taken (for example, adding a block). Different blockchains can use
different consensus algorithms, but all nodes of a given blockchain need to use
the same consensus algorithm. Different consensus algorithms are available for
both public Ethereum and Enterprise Ethereum networks.

Consortium An Ethereum network, Enterprise or public, not part of the Ethereum MainNet.

12. Synchronization and Disaster Recovery §

A. Additional Information §

A.1 Terminology

The following table provides a list of terms and definitions used in context in this Specification.

§

52 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Network

ÐApp
(Decentralized
Application, or
sometimes
Distributed
Application)

A software application running on a decentralized peer-to-peer network, often a
blockchain. A ÐApp might include a user interface running on another
(centralized or decentralized) system.

DEVp2p
The DEV Peer-to-Peer (DEVp2p) protocol defines messaging between Ethereum
clients to establish and maintain a communications channel for use by higher
layer protocols.

Enterprise
Ethereum

Enterprise-grade additions to public Ethereum complying with this
Specification.

Enterprise
Ethereum
Client

See Client.

Enterprise
Ethereum
Extension

The portions of an Enterprise Ethereum system implementing the business logic
requirements and interfaces of this Specification, over and above the
functionality of public Ethereum.

Enterprise

An organizational level entity (for example, a bank) that is a member of a
network and is likely subject to a legal agreement or a set of rules governing that
network. It consists of one or more groups of individual actors with different
roles, and a collection of nodes belonging to the enterprise.

Ethereum
An open-source, public blockchain-based, distributed computing platform
featuring smart contract (programming) functionality. [Ethereum]

Ethereum
Account

An established relationship between a participant and an Ethereum network.
Having an Ethereum account allows participants to interact with Ethereum, for
example to submit transactions or deploy smart contracts. See also Wallet.

Ethereum
MainNet

The public Ethereum blockchain network with the network identifier of 1.

Ethereum
Name Service
(ENS)

A secure and decentralized way to address resources both on and off the
Ethereum blockchain using simple, human-readable names.

Ethereum
Virtual
Machine
(EVM)

A runtime computing environment for the execution of smart contracts on
Ethereum. Each node operates an EVM.

53 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Finalized
Transaction

A finalized transaction is definitively part of the blockchain and cannot be
removed. A transaction reaches this state after some event defined for the
relevant blockchain occurs. For example, an elapsed amount of time or a specific
number of blocks added.

Formal
Verification

Mathematical verification of the logical correctness of a smart contract in the
context of the EVM.

Gas
A virtual pricing mechanism for transactions and smart contracts, used by
Ethereum to protect against Denial of Service attacks and spam. Gas is defined
in the [Ethereum-Yellow-Paper].

Group
A collection of users that have or are allocated one or more common attributes.
For example, common privileges allowing users to access a specific set of
services or functionality.

Hardware
Security
Module
(HSM)

A physical device to provide strong and secure key generation, key storage, and
cryptographic processing.

Integration
Library

A software library to implement APIs with different language bindings for
interacting with Ethereum nodes, such as the JSON-RPC API. For example,
[web3j], [web3.js], and [Nethereum].

Inter-chain
Inter-chain mediators allowing interaction between different blockchains and
ledgers.

JSON-RPC
API

The Application Programming Interface (API) implemented by public Ethereum
to allow ÐApps and wallets to interact with the platform. The [JSON-RPC]
remote procedure call protocol and format is used for its implementation.

Metadata
The set of data that describes and gives information about the payload data in a
transaction.

Node
A peer in a peer-to-peer distributed system of computing resources that together
form a blockchain system, each of which runs a client.

Off-Chain
(Compute)
Scaling
Mechanism

Processing executed externally to an Ethereum blockchain to facilitate increased
transaction speeds. For example, proofs for ZK-SNARKS, which are verified
on-chain, or computationally intensive tasks offloaded to one or more Trusted
Computing services

Off-Chain
(Layer 2)
Scaling
Mechanism

Extensions to public Ethereum using smart contracts, or techniques such as
[Plasma], and [state-channels], to facilitate increased transaction speeds. For
more information, see [Layer2-Scaling-Solutions].

54 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Off-Chain
(Trusted
Execution)

Offloading of compute intensive processing for scalability improvements, whilst
maintaining transaction privacy.

On-Chain
Privacy
Mechanism

Extensions to public Ethereum, such as ZK-SNARKS, or privacy-preserving
trusted computing compute, enabling private transactions.

On-Chain
(Layer 1)
Scaling
Mechanism

Extensions to the public Ethereum base protocol, such as [sharding], to facilitate
increased transaction speeds. For more information, see [Layer2-Scaling-
Solutions].

Oracle

A service external to either public Ethereum or an Enterprise Ethereum
implementation that is trusted by the creators of smart contracts and called to
provide information. For example, services to return a current exchange rate or
the result of a mathematical calculation.

Participant A User or Enterprise being a party to a transaction within Enterprise Ethereum.

Payload Data
The content of the data field of a transaction, which is usually obfuscated in
private transactions. Payload data is separate from the metadata in the
transaction.

Performance
The total effectiveness of the system, including overall throughput, individual
transaction time, and availability.

Permissioning
The property of a system to ensure operations are executed by and accessible to
designated parties.

Precompiled
Contract

A smart contract compiled from its source language to EVM bytecode and
stored by an Ethereum node for later execution.

Privacy

As defined in ITU [X.800], privacy is “The right of individuals to control or
influence what information related to them may be collected and stored and by
whom and to whom that information may be disclosed.” For the purposes of this
Specification, this right of privacy also applies to organizations to the extent
permitted by law.

Private State
State data that is not shared in the clear in the globally replicated state tree. This
data can represent bilateral or multilateral arrangements between counterparties,
for example in private transactions.

Private
Transaction

A transaction where some information about the transaction, such as the payload
data, or the sender and recipient, is only available to the subset of network
participants who are parties to that transaction.

Private A subsystem of an Enterprise Ethereum system for implementing privacy and

55 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Transaction
Manager

permissioning.

Public
Ethereum

The Ethereum software developed and released by the [Ethereum-Foundation].

Role
A set of administrative tasks, each with an associated set of permissions that
apply to users or administrators of a system.

Scaling
Increasing the capability of a system, network, or process to handle more work.
In terms of Ethereum, this is about increasing transaction speed using on-chain
scaling or off-chain scaling mechanisms, or both.

Sidechain
A separate Ethereum blockchain operating on the Ethereum network nodes. A
sidechain can be public or private and can also operate on a consortium network.

Smart
Contract

A computer program that, in an Ethereum context, is executable on the EVM.
Smart contracts can be written in higher-level programming languages that
compile to EVM bytecode. Smart contracts are most often used to implement a
contract between parties where the execution is guaranteed and auditable to the
level of security provided by Ethereum itself.

Smart
Contract
Language

A programming language and associated tooling used to create smart contracts.
For example, [Solidity] and [LLL].

Sync Synchronization of state with the state held by other nodes.

Transaction
A request to execute operations that change state in a blockchain network.
Transactions can involve one or more participants.

Trusted
Execution

Enabling privacy during code execution.

Trusted
Computing

A system available from the blockchain to execute transactions and smart
contracts outside the core blockchain. This can be used to private improved
privacy, performance, or security. Such systems can be hardware or software-
based, depending on the use case.

Unspent
Transaction
Output

Output from a transaction that can be spent as an input for a new transaction.

User

A human or an automated process interacting with Enterprise Ethereum through
the JSON-RPC API. The identity of a user is represented by an Ethereum
account. Public key cryptography is used to sign transactions so the EVM can
authenticate the identity of the user sending a transaction.

Wallet A software application used to store an individual’s credentials (cryptographic

56 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

private keys), which are associated with the state of that user’s account on a
blockchain. See also Ethereum account.

Whisper A network protocol designed for ÐApps to communicate with one another.

Zero-
knowledge
Proof

In cryptography, a method where one party (the prover) can prove to another
party (the verifier) that the prover knows a value x, without conveying any
information apart from the fact that the prover knows the value x.

The EEA acknowledges and thanks the many people who contributed to the development of this
Specification.

This specification builds on the work of all who contributed to the previous version, whom we
hope are all acknolwedged in the Enterprise Ethereum Client Specification v1. The editors would
especially like to thank David Hyland-Wood for his incomparable effort as co-editor of that
version.

We apologise to anyone whose name was inadvertently ommitted. Please advise us at
https://entethalliance.org/contact/ of any errors or omissions.

Full details of all changes since the version 1.0 release of this Specification are available in the
GitHub repository for this Specification.

This section outlines substantive changes made to the specification:

Pull Request 253: Update terminology from "Trusted Execution Environment" to "Trusted
Computing", and clarify that it is not a specific hardware solution, but can be based on
software.

Pull Request 212: Add requirement PERM-070 requiring a set of smart contracts for network
permissions:

Participant

ParticipantGroup

Network

PermissioningDecider

Pull Request 60: Add eea_sendTransaction, the synchronous method for sending
transaction using RPC.

A.2 Acknowledgments §

A.3 Changes §

57 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Pull Request 286: Add requirement XCLI-050 to clarify that implementations MUST support
precompiled smart contracts defined for Public Ethereum.

Pull Request 205: Update requirement JRPC-010 to specify a list of required methods for the
JSON-RPC API, and add requirements:

JRPC-007 to require compatibility with current method versions.

JRPC-011 to allow other methods to be implemented.

JRPC-015 to require support for [[JSON RPC]] calls using websockets.

JRPC-040 to require support for debug_traceTransaction.

JRPC-050, JRPC-060, and JRPC-070 describing requirements to support the

[JSON-RPC-PUB-SUB] API.

JRPC-080 to reserve the eea_ namespace for Enterprise Ethereum extensions.

Pull Request 256: Add non-normative Section 3. Security Considerations, and remove
requirement ONCH-010 mandating an untestable implementation strategy instead of a
requirement on existing implementations.

Pull Request 261: Update requirement PART-050 and add requirement PART-055 to clarify
that implementations MUST support connecting to an identity server, but also support
anonymous participants.

Pull Request 218: Remove requirements:

CONS-010 and CONS-040 requiring support for the Ethereum Mainnet consensus
algorithm.

CONS-060 requiring documentation for consensus algorithms.

CONS-070 requiring consensus algorithm implementations to be modular and
configurable.

Pull Request 192: Add requirements XCLI-030 and XCLI-040 to implement the Ethereum gas
mechanism, allowing for a gas price of zero.

Pull Request 229: Update requirements OFFCH-010 and EXEC-050 to state clients MAY
(instead of SHOULD) implement Off-chain transactions / Trusted Computing.

Pull Request 147: Update requirement SCAL-010 about the ability for improved on-chain
processing rates of transactions and smart contracts using layer 1 and layer 2 solutions.

Pull Request 225: Update requirement EXEC-040 to state clients SHOULD (instead of MAY)
support EEA-defined precompiled smart contracts.

Pull Request 198: Add requirement PROT-060 that clients SHOULD implement the [Whisper-
protocol].

Pull Request 216: Remove requirements SYNC-010 and SYNC-020 about backup
mechanisms for clients.

58 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Pull Request 215: Remove requirement PERF-040 about support for changing the genesis
block.

Pull Request 213: Remove requirements PERF-010, PERF-020, and PERF-030 about
performance.

Pull Request 217: Remove requirement CONS-090 about support for IBFT [EIP-650]
consensus.

Pull Request 214: Add requirement XCLI-005 about aligning public Ethereum features with
Byzantium release. Remove requirement CONF-010 because we no longer require that clients
can operate on the public Ethereum network.

Pull Request 145: Add requirements PART-070 and PRIV-200 about finer grained
permissioning over different transaction types, closing issue 99.

Pull Request 144: Add requirement ACCT-010 that clients SHOULD support Ethereum
account whitelisting, and requirement ACCT-020 that if account whitelisting is implemented,
it be done through an API.

Pull Request 67: Add the Web3_clientcapabilities RPC method to find information
about client capabilities, closing issue 58. The information available through this method is
expected to be expanded.

Contract ABI Specification. Ethereum Foundation. URL:
https://solidity.readthedocs.io/en/develop/abi-spec.html

[debug-traceTransaction]
debug_traceTransaction. URL: https://github.com/ethereum/go-ethereum/wiki/Management-
APIs

[DEVp2p-Wire-Protocol]
ÐΞVp2p Wire Protocol. URL: https://github.com/ethereum/wiki/wiki/ÐΞVp2p-Wire-Protocol

[EIP-650]
Istanbul Byzantine Fault Tolerance. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/650

[enode]
Ethereum enode URL format. Ethereum Foundation. URL:

https://github.com/ethereum/wiki/wiki/enode-url-format

[ERC-20]

B. References §

B.1 Normative references

[ABI]

§

59 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

Ethereum Improvement Proposal 20 - Standard Interface for Tokens. Ethereum Foundation.
URL: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

[ERC-223]
Ethereum Improvement Proposal 223 - Token Standard. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/223

[ERC-621]
Ethereum Improvement Proposal 621 - Token Standard Extension for Increasing &
Decreasing Supply. Ethereum Foundation. URL: https://github.com/ethereum/EIPs/pull/621

[ERC-721]
Ethereum Improvement Proposal 721 - Non-fungible Token Standard. Ethereum Foundation.
URL: https://github.com/ethereum/eips/issues/721

[ERC-827]
Ethereum Improvement Proposal 827 - Extension to ERC-20. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/827

[Ethereum]
Ethereum Foundation. URL: https://www.ethereum.org/foundation

[Ethereum-Wire-Protocol]
Ethereum Wire Protocol. URL: https://github.com/ethereum/wiki/wiki/Ethereum-Wire-
Protocol

[Ethereum-Yellow-Paper]
Ethereum: A Secure Decentralized Generalized Transaction Ledger. Dr. Gavin Wood. URL:
https://ethereum.github.io/yellowpaper/paper.pdf

[EVM-Opcodes]
Ethereum Virtual Machine (EVM) Opcodes and Instruction Reference. URL:
https://github.com/trailofbits/evm-opcodes

[GDPR]
European Union General Data Protection Regulation. European Union. URL: https://eur-
lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679

[JSON]
The application/json Media Type for JavaScript Object Notation (JSON). D. Crockford. IETF.

July 2006. Informational. URL: https://tools.ietf.org/html/rfc4627

[JSON-RPC]
JavaScript Object Notation - Remote Procedure Call. JSON-RPC Working Group. URL:
http://www.jsonrpc.org/specification

[JSON-RPC-API]
Ethereum JSON-RPC API. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/JSON-RPC

[JSON-RPC-PUB-SUB]
RPC PUB-SUB. Ethereum Foundation. URL: https://github.com/ethereum/go-
ethereum/wiki/RPC-PUB-SUB

60 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[Layer2-Scaling-Solutions]
Making Sense of Ethereum's Layer 2 Scaling Solutions: State Channels, Plasma, and Truebit.
Josh Stark. February 2018. URL: https://medium.com/l4-media/making-sense-of-ethereums-
layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4

[LLL]
LLL Introduction. Ben Edgington. 2017. URL: http://
lll-docs.readthedocs.io/en/latest/lll_introduction.html

[Nethereum]
Nethereum .NET Integration Library. Nethereum Open Source Community. URL:
https://nethereum.com

[Plasma]
Plasma: Scalable Autonomous Smart Contracts. Joseph Poon and Vitalik Buterin. August

2017. URL: https://plasma.io/plasma.pdf

[PSD2]
European Union Personal Service Directive. European Union. URL:
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC5116]
An Interface and Algorithms for Authenticated Encryption. D. McGrew. IETF. January 2008.
Proposed Standard. URL: https://tools.ietf.org/html/rfc5116

[RLP]
Recursive Length Prefix. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/RLP

[sharding]
Sharding FAQs. Ethereum Foundation. URL: https://
github.com/ethereum/wiki/wiki/Sharding-FAQs

[Solidity]
The Solidity Contract-Oriented Programming Language. Ethereum Foundation. URL:
https://github.com/ethereum/solidity

[state-channels]
Counterfactual: Generalized State Channels. URL: https://counterfactual.com/statechannels

[web3.js]
Ethereum JavaScript API. Ethereum Foundation. URL: https://github.com/ethereum/web3.js

[web3j]
web3j Lightweight Ethereum Java and Android Integration Library. Conor Svensson. URL:
https://web3j.io

[Whisper-protocol]
Whisper. Ethereum Foundation. URL: https://github.com/ethereum/wiki/wiki/Whisper

61 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

[X.800]
Security architecture for Open Systems Interconnection for CCITT applications. International
Telecommunication Union. March 1991. URL: http://www.itu.int/rec/T-REC-X.800-199103-
I/en

Byzantine Fault Tolerance. URL: https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

[DIF]

Decentralized Identity Foundation. URL: http://identity.foundation/

[EIP-648]
Easy Parallelizability. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/648

[eWASM]
Ethereum-flavored WebAssembly. URL: https://github.com/ewasm/design

[geth-repo]
Go-Ethereum. URL: https://github.com/ethereum/go-ethereum/

[implementation-code-in-Golang]
implementation code in Golang. URL: https://github.com/ethereum/go-
ethereum/blob/master/core/vm/contracts.go#L50-L360

[PoET]
Proof of Elapsed Time 1.0 Specification. Intel Corporation. 2015-2017. URL: https://
sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html#

[protocol-buffers]
A language-neutral, platform-neutral extensible mechanism for serializing structured data.

Google Developers. URL: https://developers.google.com/protocol-buffers/

[RAFT]
Raft-based Consensus for Ethereum/Quorum. J.P. Morgan. URL:
https://github.com/jpmorganchase/quorum/blob/master/raft/doc.md

[Remix]
Ethereum Tools for the Web. Ethereum Foundation. URL: https://github.com/ethereum/remix

[RFC4918]
HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV). L. Dusseault,
Ed.. IETF. June 2007. Proposed Standard. URL: https://tools.ietf.org/html/rfc4918

[Truffle]
Ethereum Development Framework. ConsenSys. URL: https://truffleframework.com/

↑

B.2 Informative references

[Byzantine-Fault-Tolerance]

§

62 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

63 ©2018 Enterprise Ethereum Alliance Inc. All Rights reserved.

