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1 Introduction 1 

This section is informative. 2 

This Specification defines Enterprise Ethereum, a system to enable enterprise-grade transactions on an 3 
Ethereum-based blockchain network. Enterprise Ethereum implementations make blockchain operations 4 
possible in enterprise production environments. Enterprise Ethereum extends and adapts various 5 
technologies and concepts of public Ethereum for enterprise deployments. 6 

Enterprise Ethereum provides a set of extensions to public Ethereum to satisfy the performance, 7 
permissioning, and privacy demands of enterprise deployments. These principles are informally known as 8 
the “three Ps” of Enterprise Ethereum. 9 

This Specification defines the interfaces to the external-facing components of Enterprise Ethereum 10 
(specifically excluding public Ethereum interfaces) and how they are intended to be used. Hence this 11 
document combines representative architecture information, and API information. 12 

1.1 Terminology 13 

The following table provides a list of terms and definitions used in context in this Specification. 14 

Table 1 Terms and Definitions 15 

Term Definition 

Client The Enterprise Ethereum client software running on a node in a blockchain network. A 
client implements Enterprise Ethereum extensions. 

Configuration The settings made by a system operator, such as which consensus algorithm to use or 
which blockchain to join. 

Consensus Nodes on the blockchain reaching agreement about the current state of the blockchain. 

Consensus Algorithm 

An algorithm by which a given blockchain achieves consensus prior to an action being 
taken (for example, adding a block). Different blockchains might use different consensus 
algorithms, but all nodes of a given blockchain must agree to use the same consensus 
algorithm. Different consensus algorithms are available for both public Ethereum and 
Enterprise Ethereum networks. 

Consortium Network An Ethereum network, Enterprise or public, not part of the Ethereum MainNet. 

ÐApp (Decentralized Application, or 
sometimes Distributed Application) 

A software application running on a decentralized peer-to-peer network, often a 
blockchain. A ÐApp might include a user interface running on another (centralized or 
decentralized) system. 

DEVp2p The DEV Peer to Peer (DEVp2p) Protocol defines messaging between Ethereum clients 
to establish and maintain a communications channel for use by higher layer protocols. 

Enterprise Ethereum Enterprise-grade additions to public Ethereum complying with this Specification.  

Enterprise Ethereum Client See client. 

Enterprise Ethereum Extension 
The portions of an Enterprise Ethereum system implementing the business logic 
requirements and interfaces of this Specification, over and above the functionality of 
public Ethereum. 

Enterprise Participant 

An enterprise participant is an organizational level entity (for example, a bank) that is a 
member of a network and is likely subject to a legal agreement or a set of rules governing 
that network. It is a managed group of individual actors with different roles, instead of a 
set of employees. 

Ethereum An open-source, public blockchain-based, distributed computing platform featuring smart 
contract (programming) functionality. [Ethereum] 

Ethereum MainNet The public Ethereum blockchain network with the network identifier of 1. 
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Term Definition 

Ethereum Name Service 
A secure name service for public Ethereum to allow identification of Ethereum nodes by 
name instead of by address. It is conceptually similar to the Domain Name Service (DNS) 
for Internet-connected machines. 

Ethereum Virtual Machine (EVM) A runtime computing environment for the execution of smart contracts on Ethereum. 
Each node operates an EVM. 

Finality A guarantee that once a transaction is included in a block it will not be auto-reversed at 
any point in the future. 

Formal Verification Mathematical verification of the logical correctness of a smart contract in the context of 
the EVM. 

Group 
A collection of individual users that share a common set of privileges allowing them to 
access a specific set of services and functionality. For example, a user in the Change 
User Password group can change passwords for other users. 

Hardware Security Module (HSM) A physical device to provide strong, secure key generation, key storage, and 
cryptographic processing. 

Integration Library 
A software library to implement APIs with different language bindings for interacting with 
Ethereum nodes, such as the JSON-RPC API. For example, [web3j], [web3.js], and 
[Nethereum]. 

JSON-RPC API 
The Application Programming Interface (API) implemented by public Ethereum to allow 
ÐApps and Wallets to interact with the platform. The [JSON-RPC] remote procedure call 
protocol and format is used for its implementation. 

Metadata The set of data that describes and gives information about the payload data in a 
transaction. 

Node A peer in a peer-to-peer distributed system of computing resources that together form a 
blockchain system, each of which runs a client. 

Off-Chain (Compute) Scaling 
Mechanism 

Processing executed externally to an Ethereum blockchain to facilitate increased 
transaction speeds. For example, proofs for ZK-SNARKS, which are verified on-chain, or 
computationally intensive tasks offloaded to one or more Trusted Execution 
Environments (TEEs). 

On-Chain (Layer 2) Scaling 
Mechanism 

Extensions to public Ethereum, such as [Plasma], state channels, and [sharding], to 
facilitate increased transaction speeds. For more information, see [Ethereum’s Layer 2 
Scaling Solutions]. 

On-Chain Privacy Mechanism Extensions to public Ethereum, such as ZK-SNARKS, or a privacy-preserving TEE 
compute, enabling private transactions. 

Oracle 

A service external to either public Ethereum or an Enterprise Ethereum implementation 
that is trusted by the creators of smart contracts and called to provide information. For 
example, services to return a current exchange rate or the result of a mathematical 
calculation. 

Participant A participant is a user of the system interacting via the JSON-RPC API. A participant may 
be a human, an automated process, or an enterprise participant. 

Payload Data The content of the data field of a transaction, which is usually obfuscated in private 
transactions. Payload data is separate from the metadata in the transaction. 

Performance The total effectiveness of the system, including overall throughput, individual transaction 
time, and availability. 

Permissioning The property of a system to ensure operations are executed by and accessible to 
designated parties. 

Precompiled Contract A smart contract compiled from its source language to EVM bytecode and stored by an 
Ethereum node for later execution. 

Privacy 

As defined in ITU [X.800], privacy is “The right of individuals to control or influence what 
information related to them may be collected and stored and by whom and to whom that 
information may be disclosed.” For the purposes of this Specification, the rights of 
individuals can be extended to the rights of organizations.  

Private State The data store of Enterprise Ethereum extensions where information regarding private 
transactions is kept. 
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Term Definition 

Private Transaction A transaction where the metadata, payload data or transaction state are readable only by 
authorized parties.  

Private Transaction Manager A subsystem of an Enterprise Ethereum system for implementing privacy and 
permissioning. 

Public Ethereum The Ethereum software developed and released by the [Ethereum Foundation]. 

Role A set of administrative tasks, each with an associated set of permissions that apply to 
users or administrators of a system. 

Scaling 
Increasing the capability of a system, network, or process to handle more work. In terms 
of Ethereum, this is about increasing transaction speed using on-chain scaling or off-
chain scaling mechanisms, or both. 

Sidechain A separate Ethereum blockchain operating on the Ethereum network. A sidechain can be 
public or private and can also operate on a consortium network. 

Smart Contract 

A computer program that, in an Ethereum context, is executable on the Ethereum Virtual 
Machine (EVM). Smart contracts can be written in several higher-level programming 
languages but must compile to EVM bytecode. Smart contracts are most often used to 
implement a contract between parties where the execution is guaranteed and auditable to 
the level of security provided by Ethereum itself. 

Smart Contract Language A programming language and associated tooling used to create smart contracts. For 
example, [Solidity] and [LLL]. 

Transaction A request to execute operations that change state in a blockchain network. Transactions 
can involve one or more participants. 

Trusted Execution Environment Hardware-based security capabilities to enable a strong foundation for security. 

Unspent Transaction Output Output from a transaction that can be spent as an input for a new transaction. 

Wallet A software application used to store an individual’s credentials (cryptographic private 
keys) which are associated with the state of that user’s account on a blockchain. 

Zero-knowledge Proof 
In cryptography, a method where one party (the prover) can prove to another party (the 
verifier) that the prover knows a value x, without conveying any information apart from the 
fact that the prover knows the value x. 
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2 Conformance 1 

As well as sections marked as informative, all authoring guidelines, diagrams, examples, and notes in this 2 
Specification are informative (that is, non-normative). Everything else in this Specification is normative. 3 

Examples are shown using the following format. 4 

Example 5 

Example text. 6 

Implementors are encouraged to implement requirements in experimental sections. Certificates of Certification 7 
may be subject to implementation of experimental sections. 8 

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, 9 
RECOMMENDED, MAY, and OPTIONAL in this Specification are to be interpreted as described in RFC-10 
2119 [RFC2119]. 11 

Conforming implementations of this Specification SHOULD be capable of participating as clients in public 12 
Ethereum. This requirement is not intended to infer that transactions are required to be shared across or 13 
between public Ethereum and consortium networks. 14 

Because this Specification extends the capabilities and interfaces of public Ethereum, there is a 15 
dependency between the versions. This version of the Specification is denoted by the EEA to be 16 
interface-compatible with the following public Ethereum versions, or updated versions determined and 17 
published by the EEA: 18 

• Homestead, launched 14 March 2016  19 

• Metropolis phase 1: Byzantium, 16 October 2017. 20 

Future versions of this Specification are expected to track and align with later public Ethereum versions. 21 

http://www.ietf.org/rfc/rfc2119.txt
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3 Enterprise Ethereum Concepts 1 

This section is informative. 2 

Enterprise Ethereum implementations are extensions to public Ethereum providing enterprise-focused 3 
additions, including the capability to perform private transactions, enforce membership (permissioning) 4 
and provide transaction throughput scaling. Private transactions are transactions where the metadata or 5 
payload data are readable only by parties participating in those transactions. 6 

The following two diagrams show the relationship between Enterprise Ethereum components that can be 7 
part of any EEA compliant client implementation. The first is a stack representation of the architecture 8 
showing a library of interfaces, while the second is a more traditional style architecture diagram showing a 9 
representative architecture.  10 

 11 

Figure 1 Enterprise Ethereum Architecture Stack 12 
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 1 

Figure 2 Representative Enterprise Ethereum High-level Architecture 2 

The architecture stack for Enterprise Ethereum consists of the following five layers:  3 

• Network 4 

• Core Blockchain 5 

• Privacy and Scaling 6 

• Tooling 7 

• Application.  8 

These layers are described in the following sections. 9 

3.1 Network Layer 10 

The Network layer consists of an implementation of the DEVp2p networking protocol. This allows 11 
Ethereum nodes to communicate with each other using various protocols running over the DEVp2p 12 
connections between the nodes. Enterprise P2P protocols can be used for communications supporting 13 
other higher layer functions, such as consensus. 14 
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3.2 Core Blockchain Layer 1 

The Core Blockchain layer consists of a mechanism to establish consensus between Ethereum nodes for 2 
the acceptance of new blocks. Public consensus algorithms provide a method of doing this when 3 
operating with public Ethereum chains. An example of a public consensus algorithm is the Proof of Work 4 
(PoW) algorithm, described in the [Ethereum Yellow Paper]. Over time PoW is likely to be phased out 5 
from use and replaced with new methods, such as Proof of Stake (PoS). 6 

Enterprise Ethereum implementations provide private consensus algorithms for operations within their 7 
private consortium.  8 

Example 9 

Example consensus algorithms include Istanbul [Byzantine Fault Tolerance] (IBFT) [EIP-650], [RAFT], 10 
and [Proof of Elapsed Time] (PoET). 11 

The Execution sublayer implements a virtual machine used within an Ethereum node, such as the 12 
Ethereum Virtual Machine (EVM) or [Ethereum flavored WebAssembly] (eWASM), its instruction set, and 13 
other computational capabilities as required. 14 

Lastly, within the Core Blockchain layer, the Storage and Ledger sublayer is provided to store the 15 
blockchain state, such as smart contracts for later execution. This sublayer follows blockchain security 16 
paradigms such as using cryptographically hashed tries, an Unspent Transaction Output (UTXO) model, 17 
or at-rest-encrypted key-value stores. 18 

3.3 Privacy and Scaling Layer 19 

The Privacy and Scaling layer implements the necessary privacy and scaling extensions needed in 20 
Enterprise Ethereum to support enterprise-grade deployments. 21 

This Specification does not seek to constrain experimentation to improve the scalability of future 22 
implementations of public Ethereum or Enterprise Ethereum. Instead, there is recognition that several 23 
forms of scaling improvements will be made to Ethereum nodes over time, the exact form of which cannot 24 
be known at this time. Various On-Chain (Layer 2) scaling mechanisms may be implemented, such as 25 
[Plasma], [sharding], and easy parallelizability [EIP-648], as well as other Off-Chain (Compute) scaling 26 
mechanisms. 27 

Similarly, various On-Chain privacy mechanisms are being explored, such as support for zero-knowledge 28 
proofs on public Ethereum. 29 

Enterprise Ethereum implementations are required to provide support for private transactions as 30 
described in later sections. Enterprise Ethereum implementations might also provide support for Trusted 31 
Execution Environments (TEEs) enabling privacy during code execution. 32 

3.4 Tooling Layer 33 

The Tooling layer critically contains the APIs used to communicate with Ethereum nodes. The primary 34 
API is a JSON-RPC API used to submit transactions for execution or deploy smart contracts to maintain 35 
arbitrary state. Other API interfaces are allowed, including those intended for inter-blockchain operations 36 
and to call external services, such as trusted oracles. 37 

Public Ethereum nodes are often implemented using common integration libraries such as [web3j], 38 
[web3.js], or [Nethereum]. Likewise, Enterprise Ethereum implementations are expected to integrate with 39 
enterprise management systems using common APIs, libraries, and techniques. 40 
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Public Ethereum nodes can choose to offer local handling of user credentials, such as key management 1 
systems and wallets. Such facilities might also be implemented outside the purview of an Ethereum node. 2 
Enterprise Ethereum implementations enable restricted operations based on user permissions and 3 
authentication schemes.  4 

The Tooling layer also provides support for the compilation, and possibly formal verification of, smart 5 
contracts through the use of parsers and compilers for one or more smart contract languages. Languages 6 
such as [Solidity] and [LLL] are commonly implemented, but support for other languages might be 7 
provided without restriction. 8 

3.5 Application Layer 9 

Finally, the Application layer exists, often fully or partially outside of an Ethereum node, whereby higher-10 
level services are provided. For example, Ethereum Name Service (ENS), node monitors, blockchain 11 
state visualizations and explorers, self-sovereign and other identity schemes, wallets, and any other 12 
applications of the ecosystem envisaged.  13 

Wallets can interface with Enterprise Ethereum extensions using the Extended RPC API, as shown in 14 
Figure 2. A wallet can also interface directly with the enclave of a private transaction manager, or 15 
interface with a public Ethereum client. 16 

4 Application Layer 17 

The Application layer sits at the top of the Enterprise Ethereum stack. This layer contains the components 18 
which are built on top of the core Enterprise Ethereum architecture. 19 

4.1 ÐApps Sublayer 20 

Decentralized Applications (ÐApps) run on top of Ethereum.  21 

ÐApps MAY use the Enterprise Ethereum extension to the JSON-RPC API defined in this Specification. 22 

Also at this layer are the blockchain explorers, the tools to monitor the blockchain, and the business 23 
intelligence tools. 24 

4.2 Infrastructure Contracts and Standards Sublayer 25 

The Infrastructure Contracts and Standards sublayer shows emerging standards outside the Enterprise 26 
Ethereum core specification. The components in this layer provide enablers for the applications built on 27 
top of them.  28 

Decentralized identity standards are being developed, for example, by the [Decentralized Identity 29 
Foundation]. 30 

Role Based Access Control (RBAC) defines methods for authentication and restricting system access to 31 
authorized users, potentially realized through smart contracts. 32 

Network Governance methods controlling which entities can join the network and hence assist with 33 
safeguarding exchanges. 34 

http://identity.foundation/
http://identity.foundation/
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Token standards provide common interfaces and methods along with best practices. These include 1 
[ERC-20], [ERC-223], [ERC-621], [ERC-721], and [ERC-827]. 2 

The ENS provides a secure mapping from simple, human-readable names to Ethereum addresses for 3 
resources both on and off the blockchain. 4 

4.3 Smart Contract Tools Sublayer 5 

Enterprise Ethereum inherits the smart contract tools used by public Ethereum. This consists of smart 6 
contract languages and associated parsers, compilers and debuggers, as well as methods used for the 7 
formal verification of smart contracts. 8 

Implementations MUST provide deployment and debugging tools for Enterprise Ethereum smart contracts. 9 

Example 10 

Examples of smart contract deployment and debugging tools used in public Ethereum include [Truffle] 11 
and [Remix].  12 

Implementations SHOULD extend formal verification methods for use with Enterprise Ethereum smart 13 
contracts. 14 

Enterprise Ethereum implementations enable use of these tools and methods through implementation of 15 
the Execution sublayer, as described in Section 7.2. 16 

5 Tooling Layer 17 

5.1 Permissions and Credentials Sublayer 18 

Permissioning refers to the ability of an individual node to join the network, and the ability of an individual 19 
participant or node to perform specific functions on the Enterprise Ethereum network. For example, only 20 
certain nodes can act as validators, while other participants can instantiate smart contracts. 21 

Enterprise Ethereum provides a permissioned implementation of Ethereum that supports transaction 22 
privacy. Privacy can be realized at various levels, including peer node connectivity permissioning, 23 
participant-level permissioning, controlling which nodes see, relay, and store private transactions, and 24 
cryptographically protecting transaction data. 25 

5.1.1 Nodes 26 

Enterprise Ethereum implementations MUST provide the ability to specify at startup a list of static peer 27 
nodes to establish peer-to-peer connections with. 28 

Implementations MUST provide the ability to enable or disable peer-to-peer node discovery. 29 

Implementations MUST provide the ability to specify a whitelist of the node identities permitted to join the 30 
network.  31 

Implementations MAY provide the ability to specify a blacklist of the node identities not permitted to join 32 
the network.  33 

It MUST be possible to specify the node whitelist through an interface or API. 34 

It MUST be possible to specify the node blacklist (if implemented) through an interface or API. 35 
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Implementations MUST provide a way to certify the identities of nodes. 1 

Example 2 

White-listing a validating node by making a suitable entry in a dedicated smart contract, or black-listing a 3 
node by making a corresponding entry in another dedicated smart contract. An alternative approach could 4 
be implementing a cost of gas enabling the private ether to be used as a permissioning token. 5 

An Enterprise Ethereum client SHOULD provide mechanisms to define clusters of nodes at the 6 
organizational level, in the context of permissioning.  7 

5.1.2 Participants 8 

Implementations MUST provide the ability to specify a whitelist of participant identities who are permitted 9 
to submit transactions.  10 

Implementations MAY provide the ability to specify a blacklist of participant identities who are not 11 
permitted to submit transactions.  12 

It MUST be possible to specify the participant whitelist through an interface or API. 13 

It MUST be possible to specify the participant blacklist (if implemented) through an interface or API. 14 

Implementations MUST provide a way to certify the identities of participants. 15 

Implementations MUST provide the ability to specify participant identities in a way aligned with the usual 16 
concepts of groups and roles.  17 

5.1.3 Additional Permissioning Requirements 18 

Implementations SHOULD provide permissioning schemes through standard mechanisms, such as smart 19 
contracts used in a modular way. That is, permissioning schemes could be implemented to interact with 20 
smart contract-based mechanisms.  21 

Implementations SHOULD provide the ability for configuration to be updated at run time without the need 22 
to restart. 23 

Implementations MAY provide configuration through the use of flat files, command-line options, or 24 
configuration management system interfaces. 25 

Implementations MAY support local key management allowing users to secure their private keys.  26 

Implementations MAY support secure interaction with an external Key Management System for key 27 
generation and secure key storage.  28 

Implementations MAY support secure interaction with a Hardware Security Module (HSM) for deployments 29 
where higher security levels are needed. 30 
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5.2 Integration and Deployment Tools Sublayer 1 

5.2.1 Integration Libraries 2 

Implementations MAY provide integration libraries enabling convenience of interaction through additional 3 
language bindings.  4 

Example 5 

Integration libraries might include [web3j], [web3.js], [Nethereum], [protocol buffers], or a REST API. 6 

5.2.2 Enterprise Management Systems 7 

Enterprise-ready capabilities provide the ability to integrate with enterprise management systems using 8 
common APIs, libraries, and techniques, as shown in Figure 3. 9 

 10 

Figure 3 Management Interfaces 11 

Implementations SHOULD provide enterprise-ready software deployment and configuration capabilities, 12 
including the ability to easily: 13 

• Deploy through enterprise remote software deployment and configuration systems. 14 

• Modify configurations on already deployed systems. 15 

• Audit configurations on already deployed systems. 16 

Implementations SHOULD provide enterprise-ready software fault reporting capabilities, including the 17 
ability to: 18 

• Log software fault conditions. 19 

• Generate events to notify of software fault conditions. 20 

• Accept diagnostic commands from software fault management systems. 21 

Implementations MAY provide enterprise-ready performance management capabilities, including the 22 
ability to easily provide relevant performance management metrics for analysis by enterprise performance 23 
management systems. 24 

Implementations SHOULD provide enterprise-ready security management interaction capabilities, 25 
including the ability for: 26 

• Logs to be easily monitored by enterprise security management systems. 27 

• Events to be easily monitored by enterprise security management systems. 28 

• Secure network traffic to be monitored by enterprise security management systems. 29 
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Implementations MAY provide enterprise-ready capabilities to support historical analysis, including the 1 
ability for relevant metrics to be easily collected by an enterprise data warehouse system for detailed 2 
historical analysis and creating analytical reports. 3 

Implementations MAY include support for other enterprise management systems, as appropriate, such 4 
as: 5 

• Common Management Information Protocol (CMIP) 6 

• Web-Based Enterprise Management (WBEM) 7 

• Application Service Management (ASM) instrumentation. 8 

5.3 Client Interfaces Sublayer 9 

5.3.1 Extensions to the JSON-RPC API 10 

This section is experimental. 11 

[JSON] (JavaScript Object Notation) is a lightweight data-interchange format. [JSON] is a language-12 
independent text format that is easy for humans to read and write, and for systems to parse and 13 
generate, making it ideal for exchanging data. 14 

[JSON-RPC] is a stateless, light-weight remote procedure call (RPC) protocol using [JSON] as its data 15 
format. The [JSON-RPC] specification defines several data structures and the rules around their 16 
processing. 17 

A JSON-RPC API is used to communicate between ÐApps and Ethereum clients. 18 

Implementations MUST provide support for the public Ethereum JSON-RPC API. 19 

Implementations MUST provide the eth_sendTransactionAsync Enterprise Ethereum extension call to 20 
the public Ethereum [JSON-RPC API] for at least one of the private transaction types defined in Section 21 
6.1.2. The eth_sendTransactionAsync call MUST respond with an HTTP 501 (Not Implemented) status 22 
code when an unimplemented private transaction type is requested. 23 

eth_sendTransactionAsync 24 

Creates a transaction, signs it, submits it to the transaction pool, and returns immediately. 25 

Using this function allows sending many transactions without waiting for recipient confirmation. 26 

Note: As in the public Ethereum [JSON-RPC API], the two key datatypes for this call, which are passed 27 
hex encoded, are unformatted data byte arrays (DATA) and quantities (QUANTITY). When encoding 28 
unformatted data, encode as hex, prefix with “0x”, and use two hex digits per byte. When encoding 29 
quantities (integers and numbers), encode as hex and prefix with “0x”. 30 

Parameters 31 

The transaction object containing: 32 

• from: DATA, 20 bytes – The address the transaction is sent from. 33 

• to: DATA, 20 bytes – The address the transaction is sent to. 34 

• gas: QUANTITY – Optional. The gas, as an integer, provided for the transaction. 35 

• gasPrice: QUANTITY – Optional. The gas price, as an integer. 36 

• value: QUANTITY – Optional. The value, as an integer, sent with this transaction. 37 

http://www.json.org/
http://www.json.org/
http://www.jsonrpc.org/specification
http://www.json.org/
http://www.jsonrpc.org/specification
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• data: DATA, 20 bytes – Transaction data (compiled smart contract code or encoded function data). 1 

• nonce: QUANTITY – Optional. A nonce value, as an integer. This allows you to overwrite your own 2 
pending transactions that use the same nonce. 3 

• privateFrom: DATA, 20 bytes – For private transactions, the public key of the sender.  4 

• privateFor: DATA – For private transactions, an array of the public keys of the intended recipients. 5 

• restriction: STRING – Optional. If restricted, the transaction is a restricted private transaction. If 6 
unrestricted the transaction is an unrestricted private transaction. If this parameter is not supplied, 7 
the default is restricted. For more information, see Section 6.1.2. 8 

• callbackUrl: STRING – The URL to post the results of the transaction to. 9 

Callback Body 10 

The callback object containing: 11 

• txHash: DATA, 32 bytes – The transaction hash (if successful). 12 

• error: STRING – Optional. Includes an error message describing what went wrong. 13 

• id: DATA – Optional. The ID of the request corresponding to this transaction, as provided in the initial 14 
[JSON-RPC] call. 15 

If creating a contract, use eth_getTransactionReceipt to retrieve the contract address after the 16 
transaction is finalized. 17 

Request Format 18 

curl -X POST --data '{"jsonrpc":"2.0","method":"eth_sendTransactionasynch","params":[{ 19 
  "from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155", 20 
  "to": "0xd46e8dd67c5d32be8058bb8eb970870f072445675", 21 
  "gas": "0x76c0",  22 
  "gasPrice": "0x9184e72a000", 23 
  "value": "0x9184e72a",  24 
  "data": 25 
"0xd46e8dd67c5d32be8d46e8dd67c5d32be8058bb8eb970870f072445675058bb8eb970870f072445675", 26 
  "privateFrom": "0xb60e8dd61c5d32be8058bb8eb970870f07233155", 27 
  "privateTo": "0xd46e8dd67c5d32be8058bb8eb970870f072445675", 28 
  "callbackUrl": "http://myserver/id=1", 29 
  "restriction": "restricted"}], 30 
  "id":1}' 31 

Response Format 32 

{ 33 
  "id":1, 34 
  "jsonrpc": "2.0", 35 
} 36 

Callback Format 37 

{ 38 
  "txHash": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331" 39 
} 40 

http://www.jsonrpc.org/specification
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5.3.2 Inter-Chain 1 

With the rapid expansion in the number of different blockchains and ledgers, inter-chain mediators are 2 
necessary to allow interaction between them. Like other enterprise solutions that include privacy and 3 
scalability, inter-chain mediators can be Layer 2, such as using public Ethereum to anchor (or peg) state 4 
needed to track and checkpoint state. 5 

Enterprise Ethereum implementations MAY provide inter-chain mediation capabilities to enable 6 
interaction with different blockchains. 7 

5.3.3 Oracles 8 

In many situations, smart contracts need to interact with real-world information to operate. Oracles 9 
securely bridge the data-gap from the smart contract to the real-world information source. 10 

Enterprise Ethereum implementations SHOULD provide the ability to securely interact with oracles to 11 
send and receive real-world information. 12 

6 Privacy and Scaling Layer 13 

6.1 Privacy Sublayer 14 

Privacy, in the context of this Specification, refers to the ability to keep data confidential between parties 15 
privy to that transaction and to choose which details to provide about a party to one or more other parties. 16 

Enterprise Ethereum implementations are expected to provide some level of transaction privacy. Privacy 17 
can be realized at various levels including the peer node connectivity permissioning and user-level 18 
permissioning, controlling which nodes see private transactions, and obfuscating transaction data. 19 
Options for implementing compliant privacy levels are detailed in Section 6.1.4. 20 

6.1.1 On-Chain 21 

Various on-chain techniques are proposed to improve privacy.  22 

Implementations SHOULD support improved on-chain security techniques as they become available.  23 

Example 24 

Future on-chain security techniques could include techniques such as ZK-SNARKS, range proofs, or ring 25 
signatures. 26 

6.1.2 Private Transactions 27 

Many users and operators of Enterprise Ethereum implementations will be required by their legal 28 
jurisdictions to comply with laws and regulations related to privacy. For example, banks in the European 29 
Union are required to comply with the European Union’s revised Payment Services Directive [PSD2] 30 
when they provide payment services, and the General Data Protection Regulation [GDPR] when storing 31 
personal data regarding individuals. Users of Enterprise Ethereum must signal their intent as to privacy 32 
requirements when they send a transaction by utilizing a parameter on the [JSON RPC API] calls. The 33 
parameter indicates the preferred transaction type at runtime. This section defines two transaction types 34 
to be used for different privacy requirements: restricted private transactions and unrestricted private 35 
transactions. 36 
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Transaction information consists of two parts, metadata and payload data. Metadata consists of 1 
“envelope” information necessary to execute a transaction. Payload data consists of the transaction 2 
contents. 3 

Implementations MUST support private transactions using at least one of the following methods: 4 

• Private transactions where payload data is transmitted to and readable only by the direct participants 5 
of a transaction. These transactions are referred to as restricted private transactions. 6 

• Private transactions where payload data is transmitted to all nodes participating in the network but 7 
readable only by the direct participants of a transaction. These transactions are referred to as 8 
unrestricted private transactions. 9 

When implementing restricted private transactions: 10 

• Implementations MUST support masking or obfuscation of the payload data when stored in restricted 11 
private transactions (for example, using cryptographic encryption). 12 

• Implementations MUST support masking or obfuscation of the payload data when in transit in 13 
restricted private transactions (for example, using cryptographic encryption). 14 

• Implementations MAY support masking or obfuscation of the metadata when stored in restricted 15 
private transactions (for example, using cryptographic encryption). 16 

• Implementations MAY support masking or obfuscation of the metadata when in transit in restricted 17 
private transactions (for example, using cryptographic encryption). 18 

• Nodes that relay a restricted private transaction but are not participants in that transaction MUST 19 
NOT store transaction payload data. 20 

• Nodes that relay a restricted private transaction but are not participants in that transaction SHOULD 21 
NOT store metadata. 22 

• The implementation of the JSON RPC API eth_sendTransactionAsync call (if implemented), either 23 
without the restriction parameter or with the restriction parameter set to restricted, MUST 24 
result in a restricted private transaction. 25 

Example 26 

Private transactions may be implemented by creating private channels, or private smart contracts where 27 
the payload data is only stored within the nodes participating in a transaction, and not in any other node 28 
(despite that the payload data might be encrypted and only decodable by authorized parties). Private 29 
transactions should be transactions to related parties, and unrelated parties should have no access at all 30 
to the content of the transaction, the sending party, or the list of participating addresses. In fact, a private 31 
smart contract is very similar to a private blockchain network that is only replicated and certified by a 32 
subset of participating nodes but is notarized and synchronized through the underlying “public” 33 
blockchain. This private blockchain should be able to refer to data in less restrictive private smart 34 
contracts, as well as in public smart contracts. 35 

When implementing unrestricted private transactions: 36 

• Implementations SHOULD support masking or obfuscation of the recipient identity when stored in 37 
unrestricted private transactions (for example, using cryptographic encryption, or ring signatures and 38 
mixing). 39 

• Implementations SHOULD support masking or obfuscation of the sender identity when stored in 40 
unrestricted private transactions (for example, using stealth addresses). 41 

• Implementations SHOULD support masking or obfuscation of the payload data when stored in 42 
unrestricted private transactions (for example, using cryptographic encryption). 43 

• Implementations MUST support masking or obfuscation of the payload data when in transit in 44 
unrestricted private transactions (for example, using cryptographic encryption). 45 
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• Implementations MAY support masking or obfuscation of the metadata when stored in unrestricted 1 
private transactions (for example, using cryptographic encryption). 2 

• Implementations MAY support masking or obfuscation of the metadata when in transit in unrestricted 3 
private transactions (for example, using cryptographic encryption). 4 

• Nodes that relay an unrestricted private transaction but are not participants in that transaction MAY 5 
store payload data. 6 

• Nodes that relay an unrestricted private transaction but are not participants in that transaction MAY 7 
store transaction metadata. 8 

• The implementation of the JSON RPC API eth_sendTransactionAsync call (if implemented) with the 9 
restriction parameter set to unrestricted MUST result in an unrestricted private transaction. 10 

Example 11 

Obfuscated data that is replicated across all nodes can be reconstructed from any node, albeit in 12 
encrypted form. Mathematical transactions on numerical data should be able to be validated by the 13 
underlying network on a zero-knowledge basis, only to be accessed verbatim by participating parties to 14 
the transaction. Specifically, a client should provide the ability to maintain and transact against numerical 15 
balances certified by the whole community of validators on a zero-knowledge basis. An alternative to the 16 
zero-knowledge approach could be the combined use of ring signatures, stealth addresses, and mixing, 17 
which is demonstrated to provide the necessary level of obfuscation that is mathematically impossible to 18 
penetrate and does not rely on the trusted setup required by ZK-SNARKS. 19 

Implementations SHOULD be able to extend the set of participants in a private transaction (or forward the 20 
private transaction in some way). 21 

Implementations SHOULD provide the ability for nodes to achieve consensus on their mutually private 22 
transactions.  23 

Example 24 

The differences between restricted private transactions and unrestricted private transactions are 25 
summarized in the table below. 26 

Table 2 Restricted and Unrestricted Private Transactions 27 

Restricted Private Transactions (if implemented) Unrestricted Private Transactions (if implemented) 

Metadata Payload Data Metadata Payload Data 

MAY mask or obfuscate MUST mask or obfuscate MAY mask or obfuscate 
SHOULD mask or obfuscate 
sender and recipient identity 

MUST mask or obfuscate in 
transit 
SHOULD mask or obfuscate 
in storage 

SHOULD NOT allow storage 
by non-participating nodes 

MUST NOT allow storage by 
non-participating nodes 

MAY allow storage by non-
participating nodes 

MAY allow storage by non-
participating nodes 

6.1.3 Off-Chain (Trusted Execution) 28 

TEEs are useful for performing secure, private, efficient, and scalable operations, to provide an additional 29 
layer of security, and protecting privacy. When coupled to a blockchain as an off-chain processing 30 
environment, TEEs provide the ability for secure, efficient, and scalable transactions, smart contract 31 
execution, and privacy of sensitive contact data. 32 

Enterprise Ethereum implementations SHOULD provide the ability for off-chain, trusted execution of 33 
transactions and smart contracts. 34 
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6.1.4 Privacy Levels 1 

Implementations can support different levels of privacy, as outlined in Table 3, and still comply with this 2 
Specification. Because permissioning and privacy are interrelated concepts, the privacy levels specified 3 
contain requirements related to both the permissioning and privacy sections of this Specification. 4 

Privacy Level C is the base privacy level for all compliant implementations. To comply with Privacy Level 5 
C, implementations have to comply with all MUST and MUST NOT requirements of this Specification. The 6 
requirements specifically related to permissioning are the MUST peer node connectivity and user-level 7 
permissioning requirements in Sections 5.1.1 and 5.1.2. Implementations have a choice when complying 8 
with privacy requirements. To comply with Privacy Level C, implementations are required to comply with 9 
all the MUST and MUST NOT requirements in Section 6.1.2 related to either restricted private 10 
transactions or unrestricted private transactions. 11 

Supporting specific SHOULD requirements increases the privacy and permissioning abilities for an 12 
implementation and are thus recognized as having specific value to users. 13 

Privacy Level B is obtained by providing support for the requirements of Privacy Level C, plus 14 
implementing all the SHOULD requirements related to peer node connectivity and user-level 15 
permissioning requirements in Sections 5.1.1, 5.1.2, and 5.1.3. Implementations obtaining Privacy Level 16 
B demonstrate increased interoperability with the public Ethereum ecosystem and other Enterprise 17 
Ethereum implementations. 18 

Privacy Level A is obtained by providing support for Privacy Level B, plus implementing all the SHOULD 19 
and SHOULD NOT requirements in Section 6.1.2. Implementations obtaining Privacy Level A 20 
demonstrate increased security and privacy protections for their users. Privacy Level A is considered best 21 
practice for Enterprise Ethereum implementations and its attainment is highly encouraged. 22 

EEA certification programs will recognize implementations as providing support for Privacy Levels A, B, or C. 23 
Certificates of Certification are subject to the unique requirements of EEA-approved vertical business 24 
segments. 25 

Table 3 Summary of Privacy Levels 26 

Privacy Level Description Definition 

A Best practice privacy and permissioning Implementations provide support for Privacy Level B and all the 
SHOULD and SHOULD NOT requirements in Section 6.1.2. 

B Best practice permissioning 
Implementations provide support for Privacy Level C and all the 
SHOULD peer node connectivity and permissioning 
requirements from Sections 5.1.1, 5.1.2, and 5.1.3. 

C Baseline privacy and permissioning 

Implementations provide support for all the MUST peer node 
connectivity and permissioning requirements from Sections 
5.1.1 and 5.1.2 and either: 
All the MUST and MUST NOT restricted private transaction 
requirements in Section 6.1.2 
OR 
All the MUST and MUST NOT unrestricted private transaction 
requirements in Section 6.1.2. 

6.2 Scaling Sublayer 27 

Enterprise Ethereum networks will likely have demands placed on them to handle higher volume 28 
transaction rates and potentially computationally heavy tasks. Various scaling methods can be employed 29 
to increase transaction processing rates. 30 
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6.2.1 On-Chain (Layer 2)  1 

On-chain scaling at layer 2 improves the capability to handle more transactions but without changing the 2 
underlying Ethereum protocol.  3 

Enterprise Ethereum implementations SHOULD provide the ability for improved on-chain processing rates 4 
of transactions and smart contracts. 5 

6.2.2 Off-Chain (Compute)  6 

Off-chain scaling moves some of the processing burden from the underlying blockchain network. 7 

Enterprise Ethereum implementations SHOULD provide the ability for off-chain processing of transactions 8 
and smart contracts. 9 

6.2.3 Performance  10 

Performance refers to the overall performance of the network, which should not be impaired as usage of 11 
the network grows. 12 

EEA certification programs will recognize implementations as providing support for enterprise-appropriate 13 
transaction speeds based upon the needs of EEA-approved vertical business segments.  14 

Example 15 

Certificates of Certification may require minimum transaction speeds in terms of [ERC-20] smart contract 16 
executions per second, or other measures. 17 

Implementations SHOULD support the ability to have private state data archived from the blockchain 18 
while preserving the consistency and validity of the blockchain.  19 

The computing power to validate blocks SHOULD remain constant over time, regardless of the 20 
blockchain size or the number of network participants.  21 

The time to access recent blockchain data SHOULD remain constant, regardless of the blockchain size.  22 

Example 23 

By maintaining a parallel repository of recent blocks and transactions not stored as a Merkle trie but 24 
optimized for easy reading. 25 

Implementations SHOULD allow network operators to designate a new genesis block to keep the 26 
blockchain size from growing perpetually.  27 

Example 28 

Database pruning could be supported, so light and fast applications can be built (understanding that the 29 
node might not store the complete blockchain history). 30 
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7 Core Blockchain Layer 1 

7.1 Storage and Ledger Sublayer 2 

Enterprise Ethereum implementations SHOULD implement data storage requirements necessary to 3 
operate a public Ethereum client. 4 

Implementations MAY implement data storage used for optional off-chain operations. For example, 5 
implementations can locally choose to cache the results from a trusted oracle or store information related 6 
to systems extensions beyond the scope of this Specification.  7 

Implementations providing support for multiple networks (for example, one or more consortium networks 8 
or a public network) MUST store data related to private transactions for those networks in private state 9 
dedicated to the relevant network. 10 

A smart contract operating on private state SHOULD be permitted to access private state created by 11 
other smart contracts involving the same participants. 12 

A smart contract operating on private state MUST NOT be permitted to access private state created by 13 
other smart contracts involving different participants. 14 

Implementations SHOULD provide the ability for private smart contracts to store file objects seamlessly 15 
and transparently, so no artificial off-chain file-storage add-ons are needed. 16 

Example 17 

Implementations might choose to provide additional APIs outside this Specification (such as the 18 
[WebDAV] protocol) for interaction with file objects. 19 

7.2 Execution Sublayer 20 

Enterprise Ethereum implementations MUST provide a smart contract execution environment 21 
implementing the public Ethereum EVM op-code set [EVM Opcodes]. 22 

Enterprise Ethereum implementations MAY provide a smart contract execution environment extending 23 
the public Ethereum EVM op-code set [EVM Opcodes]. 24 

Implementations SHOULD support the ability to synchronize their public state with the public state held by 25 
other public Ethereum nodes. 26 

Implementations MAY provide support for the compilation, storage, and execution of precompiled contracts. 27 

TEEs ensure only authorized parties can execute smart contracts on an execution environment related to 28 
a given consortium network. Implementations SHOULD provide a TEE. 29 

Multiple encryption techniques could be used to secure TEEs or private state. Implementations SHOULD 30 
provide configurable encryption options for use in conjunction with consortium networks. 31 

https://github.com/trailofbits/evm-opcodes
https://github.com/trailofbits/evm-opcodes
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7.2.1 Settlement Finality 1 

Settlement finality refers to the actions or events required for a transaction to be considered final and 2 
irreversible. 3 

When a deterministic consensus algorithm is used, transactions SHOULD be considered final after a 4 
defined interval or event. This interval may be a set time period or a set number of blocks being created 5 
since the transaction was included in a block.  6 

7.3 Consensus Sublayer 7 

Enterprise Ethereum implementations SHOULD support the ability to form consensus on Ethereum 8 
MainNet (public Ethereum) and to form consensus operating as part of an Enterprise Ethereum network. 9 

Implementations MUST be capable of supporting multiple consensus algorithms. 10 

One or more consensus algorithms SHOULD allow operations as part of an Enterprise Ethereum network. 11 

One or more consensus algorithms SHOULD allow operations on the Ethereum MainNet. 12 

One or more consensus algorithms MAY support operations on sidechain networks. 13 

Consensus algorithms MUST be clearly documented for interoperability. 14 

Consensus algorithm implementations SHOULD be modular and configurable. 15 

Example 16 

Some consensus algorithms (for example, [RAFT]) and single-leader validation schemes with multiple 17 
validation and block-making nodes simplify consensus processes, favor single-block transaction finality, 18 
and enable higher performance.  19 

Consensus algorithms MAY communicate in-band or out-of-band with other clients, as requested. That is, 20 
consensus algorithm implementations can make and receive network traffic external to the client-to-client 21 
network protocol. 22 

Implementations SHOULD support the Istanbul [Byzantine Fault Tolerance] (IBFT) consensus algorithm 23 
[EIP-650], so individual attacked or malfunctioning clients performing voting, block-making, or validation 24 
roles do not pose a critical risk to the network.  25 

Implementations MAY support other consensus algorithms. 26 

Implementations MUST provide the ability to specify the consensus algorithms, through configuration, to 27 
be used for each public blockchain, private blockchain and sidechain in use.  28 
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8 Network Layer 1 

8.1 Network Protocol Sublayer 2 

Network protocols define how nodes communicate with each other. 3 

Nodes MUST be identified and advertised using the Ethereum enode URL format [enode].  4 

Implementations SHOULD use the DEVp2p Wire Protocol [DEVp2p Wire Protocol] for messaging 5 
between nodes to establish and maintain a communications channel for use by higher layer protocols. 6 
These higher layer protocols are known as capability protocols. 7 

The [Ethereum Wire Protocol] defines the capability protocols for messaging between Ethereum client 8 
nodes to exchange status, including block and transaction information. [Ethereum Wire Protocol] 9 
messages are sent and received over an already established DEVp2p connection between nodes.  10 

Implementations SHOULD support, at a minimum, [Ethereum Wire Protocols] eth/62 and eth/63. 11 

Implementations MAY add new protocols or extend existing Ethereum protocols. 12 

To minimize the number of point-to-point connections needed between private nodes, some private 13 
nodes SHOULD be capable of relaying private transaction data to multiple other private nodes.  14 

Example 15 

Multi-party private contracts and transactions should not require direct connectivity between all parties 16 
(because this is very impractical in enterprise settings, especially when many parties are allowed to 17 
transact). Common nodes to all parties (for example, voters or blockmakers acting as bootnodes to all 18 
parties, and as backup or disaster recovery nodes) should be able to be used as gateways to synchronize 19 
private smart contracts transparently. Transactions on private smart contracts could then be transmitted 20 
to all participating parties in the same way.  21 

9 Anti-Spam 22 

This section refers to mechanisms for preventing the network being degraded with a flood of intentional or 23 
unintentional transactions. This might be realized through interfacing with an external Security Manager, 24 
as described in Section 5.2.2, or implemented by the Enterprise Ethereum client, as described in the 25 
following requirement. 26 

Enterprise Ethereum implementations SHOULD provide effective anti-spam mechanisms so attacking 27 
nodes or addresses (either malicious, buggy, or uncontrolled) can be quickly identified and stopped. 28 

Example 29 

Anti-spam mechanisms might include: 30 

• Stopping parties attempting to issue transactions above a threshold volume. 31 

• Providing a mechanism to enforce a cost for gas, so transacting parties have to acquire and pay for 32 
(or destruct) private ether to transact. 33 

• Having a dynamic cost of gas based on activity intensity. 34 

https://github.com/ethereum/wiki/wiki/enode-url-format
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EVp2p-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
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10 Cross-client Compatibility 1 

Cross-client compatibility refers to the ability for a network to operate with different clients. 2 

Enterprise Ethereum clients SHOULD be compatible with the public Ethereum network to the greatest 3 
extent possible.  4 

The requirements relating to supporting and extending the public Ethereum opcode set are outlined in 5 
Section 7.2. 6 

Implementations MAY extend the public Ethereum APIs. To maintain compatibility, implementations 7 
SHOULD ensure these new features are a superset of the public Ethereum APIs.  8 

Example 9 

Extensions to public Ethereum APIs could include Enterprise peer-to-peer APIs, [JSON-RPC APIs] over 10 
IPC, HTTP/HTTPS, and websockets. 11 

11 Synchronization and Disaster Recovery 12 

Synchronization and disaster recovery refers to how nodes in a network should behave when connecting 13 
for the first time or reconnecting. 14 

Implementations SHOULD support a fast synchronization mode so new clients can be launched quickly 15 
and synchronized to long standing, historical blockchains with the understanding that the new client might 16 
not have the complete blockchain history. 17 

Implementations SHOULD support a mechanism to back up data and use it later to initialize a node, up to 18 
a certain block.  19 

Example  20 

Hard forks might be enabled through this mechanism as well.  21 
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