
https://entethalliance.github.io/client-spec/chainspec.html

Editors:
Robert Coote (PegaSys)
Chaals Nevile (Enterprise Ethereum Alliance)
Grant Noble (PegaSys)
George Polzer (Everymans.ai)

Contributors to this version:
Imran Bashir (Quorum), Juan Blanco (Nethereum), Dan Burnett (PegaSys), Cody Burns
(Accenture), Jean-Charles Cabalguen (iExec), Rob Dawson (PegaSys), Antony Denyer
(Web3Labs), Sara Feenan (Clearmatics), Andreas Freund (Consensys), David Izzo (DTCC),
Arash Mahboubi (PegaSys), George Ornbo (Clearmatics), Fernando Paris (ioBuilders), Yaz
Khoury (ETC Cooperative), Julien Marchand (PegaSys), Niraj Pore (Fnality), Yorke Rhodes
III (Microsoft), Lucas Saldanha (PegaSys), Roberto Saltini (PegaSys), Satpal Sandhu
(Quorum), Przemek Siemion (Santander), Bob Summerwill (ETC Cooperative), Conor
Svensson (Web3Labs), Sai Murali Krishna V. (Quorum), John Whelan (Santander), Jim
Zhang (Kaleido), Lei Zhang (iExec), Weijia Zhang (Wanchain)

Copyright © 2019-2020 Enterprise Ethereum Alliance Inc. For licensing conditions and disclaimer of warranty, please
see the terms of the Legal Notice.

This document, the Enterprise Ethereum Alliance Permissioned Blockchains specification,
defines requirements for Enterprise Ethereum blockchains to ensure they can be processed
interoperably by Enterprise Ethereum clients that conform to the Enterprise Ethereum Client
specification [EEA-client]. Its primary intended audience is operators of Enterprise Ethereum
blockchains.

Enterprise Ethereum
Alliance Permissioned
Blockchains Specification
Version 1, 29 May 2020

Latest editor's draft:

Abstract

file:///Users/chaals/Documents/GitHub/client-spec/docs/release-chainspec.html
https://entethalliance.github.io/client-spec/chainspec.html
mailto:robert.coote@consensys.net
mailto:chaals@entethalliance.org
mailto:grant.noble@consensys.net
mailto:gpolzer@everymans.ai
https://entethalliance.org/

1.
1.1

2.
2.1

3.
3.1
3.2
3.3

4.

This section describes the status of this document at the time of its publication. Newer documents
may supersede this document.

This is version 1 of the Enterprise Ethereum Alliance Permissioned blockchains specification,
approved by the EEA Board as a formal publication of the EEA.

Although predicting the future is known to be difficult, as well as ongoing quality enhancement,
future work on this Specification is expected to include the following aspects:

Typical enterprise features for permissioning contracts.

Adopting an agreed [Byzantine-Fault-Tolerant] consensus algorithm

Cross-chain interoperability

Tracking developments for Ethereum 1.x and Ethereum 2.0

The group is also expecting to hear about further implementation experience, that could
potentially lead to proposed modifications. This particularly applies to experimental sections of
the specification:

Organization Registry contracts

The object syntax for maxCodeSize

Please send any comments to the EEA Technical Steering Committee through
https://entethalliance.org/contact/.

Introduction
Why Produce a Blockchain Specification?

Conformance
Experimental Requirements

Security Considerations
Positive Security Design Patterns
Handling of Sensitive Data
Upgradeable and Proxy contracts

Enterprise Ethereum Architecture

Status of This Document

Table of Contents

https://entethalliance.org/contact/

5.
5.1
5.2
5.3

6.
6.1
6.1.1
6.1.1.1

6.1.1.2

6.2
6.3
6.3.1
6.3.1.1

6.3.1.1.1

6.3.1.1.2

6.3.1.1.3

6.3.1.1.4

6.3.1.2

6.3.1.2.1

6.3.1.2.2

6.3.1.2.3

6.3.1.2.4

7.
7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3

8.
8.1
8.1.1
8.2

Application Layer
ÐApps Sublayer
Infrastructure Contracts and Standards Sublayer
Smart Contract Tools Sublayer

Tooling Layer
Credential Management Sublayer

Registry for Organizational Accounts
Pluggability To Support Different Types of Proofs

Smart Contract Based Registry for Organizational Accounts

Integration and Deployment Tools Sublayer
Client Interfaces and APIs Sublayer

Permissioning Smart Contract
Node Permissioning

Node Permissioning Functions

Node Permissions

Client Implementation

Chain Initialization

Account Permissioning
Account Permissioning Smart Contract Interface Function

Client Implementation

Contract Implementation

Chain Initialization

Enterprise 3 P's Layer
Privacy Sublayer

On-chain Privacy
Off-chain Privacy (Trusted Computing)

Performance Sublayer
On-chain (Layer 1 and Layer 2) Scaling
Off-chain (Layer 2 Compute)

Permissioning Sublayer
Nodes
Ethereum Accounts
Additional Permissioning Requirements

Core Blockchain Layer
Execution Sublayer

Finality
Consensus Sublayer

9.
9.1

A.
A.1
A.2
A.3
A.4

B.
B.1
B.2

Blockchain Configuration
The maxCodeSize network configuration parameter

Additional Information
Summary of Requirements
Defined Terms
Acknowledgments
Legal Notice

References
Normative references
Informative references

This section is non-normative.

This document, Enterprise Ethereum Alliance Permissioned Blockchains specification, defines
requirements for Enterprise Ethereum blockchains. Operators of Enterprise Ethereum
blockchains who want to be sure that they can use different conformant Enterprise Ethereum
clients on their blockchain interoperably can do so by meeting the requirements described in this
specification.

This is a companion document to the Enterprise Ethereum Alliance Client Specification [EEA-
client], which defines requirements for Enterprise Ethereum clients to ensure interoperability of
clients on an Enterprise Ethereum blockchain.

For the purpose of this Specification:

Public EthereumPublic Ethereum (Ethereum) is the public blockchain-based distributed computing
platform featuring smart contract (programming) functionality defined by the [Ethereum-
Yellow-Paper], [EIPs], and associated specifications.

Ethereum MainNetEthereum MainNet (MainNet) is the public Ethereum blockchain whose chainid and
network ID are both 1.

Enterprise EthereumEnterprise Ethereum is a standards-based ecosystem of software that extends Ethereum
to provide functionality important to solve different use cases for Ethereum blockchains that
have requirements not met by Public Ethereum. These extensions provide the ability to
perform private transactions, and enforce permissioning, for Ethereum blockchains that use
them.

1. Introduction

file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html
https://chainid.network/

An Enterprise Ethereum blockchainEnterprise Ethereum blockchain is an Ethereum-based blockchain, that meets the
requiremments described in this specification, in order to enable Enterprise Ethereum clients
to operate it.

An Enterprise Ethereum clientEnterprise Ethereum client (a client) is the software that implements Enterprise
Ethereum, and is used to run nodes on an Enterprise Ethereum blockchain. Clients need to
meet the requirements defined in the Enterprise Ethereum Alliance Client Specification.

A nodenode is an instance of an Enterprise Ethereum client running on an Enterprise Ethereum
blockchain.

A number of vendors are developing Enterprise Ethereum clients, that can communicate with
each other and interoperateinteroperate reliably on a given Enterprise Ethereum blockchain.

It is therefore important to define an Enterprise Ethereum blockchain more formally than just the
obvious implications from reading the Client Specification.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, SHALL, and SHOULD in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

This Specification includes requirements and Application Programming Interfaces (APIs) that are
described as experimental. ExperimentalExperimental means that a requirement or API is in early stages of
development and might change as feedback is incorporated. Implementors are encouraged to
implement these experimental requirements, with the knowledge that requirements in future
versions of the Specification are not guaranteed to be compatible with the current version. Please
send comments and feedback on experimental portions of this Specification to the EEA Technical
Steering Committee at https://entethalliance.org/contact/.

1.1 Why Produce a Blockchain Specification?

2. Conformance

2.1 Experimental Requirements

3. Security Considerations

file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html
https://tools.ietf.org/html/bcp14
https://entethalliance.org/contact/

This section is non-normative.

Security of information systems is a major field of work. Enterprise Ethereum software
development shares with all software development the need to consider security issues and the
obligation to update implementations in line with new information and techniques to protect its
users and the ecosystem in which it operates.

However, some aspects of Ethereum in general, and Enterprise Ethereum specifically, are
especially important in an enterprise environment.

Complex interfaces increase security risk by making user error more likely. For example,
entering Ethereum addresses by hand is prone to errors. Therefore, implementations can reduce
the risk by providing user-friendly interfaces, ensuring users correctly select an opaque identifier
using tools like a contact manager.

GasGas (defined in the [Ethereum-Yellow-Paper]) is a virtual pricing mechanism for transactions
and smart contracts that is implemented by Ethereum to protect against Denial of Service attacks
and resource-consumption attacks by compromised, malfunctioning or malicious nodes.
Enterprise Ethereum provides additional tools to reduce security risks, such as more granular
permissions for actions in a network.

Permissioning can play an important role in mitigating network-level attacks, like the 51%
attack. However, it is important to ensure permissioning administration does not compromize
security.

The implications of private data storage are also important to consider, and motivate several
requirements within this Specification.

The long-term persistence of encrypted data exposes it to eventual decryption by brute-force
attack. Advances in cryptanalysis as well as computing power increase the likelihood of this
decryption, by decreasing the cost. A future shift to post-quantum cryptography is a current
concern, but it is unlikely to be the last advance in the field. Assuming no encryption scheme
endures for eternity, a degree of protection is required to reasonably exceed the lifetime of the
data's sensitivity.

3.1 Positive Security Design Patterns

3.2 Handling of Sensitive Data

3.3 Upgradeable and Proxy contracts

Proxy contracts to enable upgrades for core contracts such as permissioning need to be designed
carefully to ensure that upgrades can be made by the parties intended, and only by them, through
the lifetime of the blockchain. In particular, storage collisions and function signature collisions
[Function-collision] can arise due to the way the EVM processes smart contracts. These issues,
and important precautions, caveats, and mitigations are described in varoious articles, such as
"Building Upgradeable Smart Contracts" [Upgrade-contracts].

This section is non-normative.

The following diagram shows the relationship between Enterprise Ethereum components.

4. Enterprise Ethereum Architecture

ENTERPRISE ETHEREUM ARCHITECTURE STACK
APPLICATION

DAPPS APPLICATIONS EXPLORERS, MONITORING & BUSINESS INTELLIGENCE

INFRA CONTRACTS &
STANDARDS

TOKEN STANDARDS IDENTITY SERVICES ETHEREUM NAME SERVICE PERMISSIONING CONTRACTS

SMART CONTRACT
TOOLS SMART CONTRACT LANGUAGES DEVELOPER TOOLS SECURITY ANALYSIS AND AUDITS FORMAL VERIFICATION

TOOLING
CREDENTIAL
MANAGEMENT WALLETS KEY MANAGEMENT HARDWARE SECURITY MANAGER

INTEGRATION &
DEPLOYMENT TOOLS INTEGRATION LIBRARIES ENTERPRISE MANAGEMENT SYSTEMS

CLIENT INTERFACES /
APIs JSON-RPC INTER-CHAIN

ENTERPRISE 3 P's

PRIVACY ON-CHAIN OFF-CHAIN / TRUSTED COMPUTE PRIVATE TRANSACTIONS

PERFORMANCE ON-CHAIN OPTIMIZATION OFF-CHAIN COMPUTING OFF-CHAIN / TRUSTED COMPUTE

PERMISSIONING ORGANIZATION REGISTRY CLIENT WHITELIST PERMISSION CHECKS

CORE BLOCKCHAIN

STORAGE/LEDGER ON-CHAIN PUBLIC STATE ON-CHAIN STORAGE OFF-CHAIN STORAGE ON-CHAIN PRIVATE STATE

EXECUTION EVM SYNC PRECOMPILED CONTRACTS TRUSTED COMPUTE

CONSENSUS PROOF OF WORK PROOF OF AUTHORITY BFT ALGORITHMS

NETWORK

NETWORK PROTOCOL DEVP2P RESTRICTED PRIVATE TRANSACTION SHARING

LEGEND Yellow Paper Public Ethereum Application Layer Enterprise Ethereum

All Yellow Paper, Public Ethereum, and Application Layer components may be extended for Enterprise Ethereum as required.
© 2018-2020 Enterprise Ethereum Alliance Inc. All rights reserved.

Figure 1 Enterprise Ethereum Architecture Stack

The architecture stack for Enterprise Ethereum consists of five layers:

Application

Tooling

Enterprise 3 P's

Core Blockchain

Network.

These layers are described in the following sections.

The Application layer is where higher-level services are provided. For example, Ethereum Name
Service (ENS), node monitors, blockchain state visualizations and explorers, and any other
applications of the ecosystem envisaged.

Decentralized Applications, or ÐAppsÐApps, are software applications running on a decentralized
peer-to-peer network, often a blockchain. A ÐApp might include a user interface running on
another (centralized or decentralized) system. ÐApps run on top of Ethereum.

Also at the ÐApps sublayer are blockchain explorers, tools to monitor the blockchain, and
business intelligence tools.

This section is non-normative.

Some important tools for managing a blockchain are built at the Application layer. These
components together make up the Infrastructure Contracts and Standards sublayer.

A Permissioning contractPermissioning contract determines whether nodes and accounts can access, or perform
specific actions on, an Enterprise Ethereum blockchain, according to the needs of the blockchain.
Permissioning contracts can implement Role-based access control (RBAC) [WP-RBAC] or
Attribute-based access control (ABAC) [WP-ABAC], as well as simpler permissioning models,
as described in the Permissioning Management Examples section of the Implementation Guide
[EEA-implementation-guide].

Token standards provide common interfaces and methods along with best practices. These
include [ERC-20], [ERC-223], [ERC-621], [ERC-721], and [ERC-827].

The Ethereum Name ServiceEthereum Name Service (ENS) provides a secure and decentralized mapping from
simple, human-readable names to Ethereum addresses for resources both on and off the
blockchain.

Enterprise Ethereum inherits the smart contract tools used by public Ethereum such as smart
contract languages and associated parsers, compilers, and debuggers.

5. Application Layer

5.1 ÐApps Sublayer

5.2 Infrastructure Contracts and Standards Sublayer

5.3 Smart Contract Tools Sublayer

The Tooling layer contains the APIs used to communicate with clients. The Ethereum JSON-Ethereum JSON-
RPC APIRPC API, implemented by public Ethereum is the primary API to submit transactions for
execution and to deploy smart contracts. The [JSON-RPC] remote procedure call protocol and
format is used for the JSON-RPC API implementation. Other APIs are allowed, including those
intended for inter-blockchain operations and to call external services, such as trusted oracles.

Enterprise Ethereum implementations can restrict operations based on permissioning and
authentication schemes.

Credentials, in the context of Enterprise Ethereum blockchains, refer to an individual’s
cryptographic private keys, which are associated with that user’s Ethereum account.

This section is experimental. The EEA is looking for feedback on

how the Organization Registry is used;

whether the design is clearly explained

whether the particular design can be improved for better usability

This section presents a smart contract based registry, to provide on-chain validation that a
particular Ethereum accounts or nodes is owned by a participating organization in an Enterprise
Ethereum blockchain.

Ethereum accounts are used in both system level functionalities and application level operations:

consensus block proposers to sign the proposed block

consensus block validators to sign the vote on the proposed block

p2p subsystem to sign p2p messages

applications to sign submitted transactions

In enterprise settings, identifying organizational ownership of signing accounts is critical in many
use cases. In the off-chain world, organizations, private businesses, governments and academic
institutions all have defined identities. It is critical to have a robust binding between the
organization's off-chain identity and their on-chain signing accounts.

6. Tooling Layer

6.1 Credential Management Sublayer

6.1.1 Registry for Organizational Accounts

One example of where this binding can be useful is permissioning. A permissioning smart
contract can use this registry to look up the organization that owns the subject account, validate
the ownership by verifying the attached cryptographic proof, and make permissioning decisions.

The binding is established with identity proofs. An identity proofidentity proof is a cryptographical data
structure that can be independently verified, either on-chain in the smart contract, or off-chain by
client applications, describing the relationship between defined entities such as an account, node,
or another participating organization (by defining the root signing account as a member of a
participating organization).

The registry does not act as the source of truth for network membership. The membership of the
blockchain network is maintained by the permissioning contracts.

The registry relies on client certificates or equivalent technologies. It is important to consider the
mechanisms to set and revoke expiration, to allow for use cases with different freshness
requirements.

ORGIDS-300: Enterprise Ethereum Blockchains MAY implement a smart contract based
Organization Registry that provides cryptographic bindings between Ethereum accounts and their
owning organization with identity proofs.

An Organization RegistryOrganization Registry follows the design outlined below.

Figure 2 Organizational Ownership of Accounts

A participating organizationparticipating organization represents a collection of accounts and nodes that share a
collective identity, for example they are owned by the same company, or they are held by officers
of a particular organization. The participating organization is identified by an account called the

root signing accountroot signing account.

ORGIDS-310: An Organization Registry MUST require all root entries to present an identity
proof with:

a signing authority attesting that the proof has been uniquely issued for the organization
identified by the subject

a digital signature generated by the private key for the root signing account

With the above properties, the proof not only demonstrates that the submitter of the registration is
associated with the subject organization, because it has access to the organization's signing
authority, but also demonstrates possession of the root signing account's private key.

Once the organization's root registry is established, the organization can add more entries for
Ethereum accounts or nodes the participating organization uses on the Enterprise Ethereum
blockchain. As illustrated above, other accounts or nodes are "attached" under the root account.
The smart contract requires the organization's root signing account to be used to add children,
thus ensuring the organizational ownership of these "child" accounts are clearly demonstrated.

ORGIDS-320: An Organization Registry MUST require the root signing account for an
organization to insert child entries under that organization.

The accounts inserted under the root account can either be Ethereum addresses or enode IDs.

ORGIDS-330: An Organization Registry MUST support an extensibility mechanism to allow
different types of proofs to be submitted and verified.

ORGIDS-340: An Organization Registry MUST support at least one of the following proof
types:

X.509 Certificates [rfc5280] generated by a trusted Certificate Authority (CA), attached to a
chain of intermediate CAs leading up to a globally recognized root CA.

A Verifiable Presentations data structure [VC-presentations] as defined within the W3C
Verifiable Credentials Data Model [vc-data-model].

Verifiable Credentials is a new W3C standard in the Decentralized Identifier (DID) ecosystem.
The Verifiable Credentials data model is not itelf suitable as a proof type because it does not
support chain-unique challenges for replay attack protections.

ORGIDS-350: An Organization Registry MAY verify the proofs in the smart contract and
immediately reject a registration that did not present a valid proof, or allow a registration to be
validated or invalidated by an off-chain agent.

ORGIDS-360:If an Organization Registry performs proof validation in the smart contract, it
MUST offer at least the following options to support different "freshness" requirements:

validate once during registration, rely on administration operations to update expired or
revoked proofs

validate during registration, replicate expiration date in the contract for faster checking
subsequently

validate every time the account is used

ORGIDS-370: Identity proofs MUST protect against re-use by a malicious party, by embedding
a chain-unique challenge segment, such as the chain ID, in the signed claims inside the proof.

Since the proofs are available to all network participants, protection against taking a proof from
one network and using it in a different network is essential.

An issuer of an Identity proof signs an identity claim that includes a unique identifier for the
network where the proof is issued.

6.1.1.1 Pluggability To Support Different Types of Proofs

https://www.w3.org/TR/2019/REC-vc-data-model-20191119/#dfn-verifiable-presentations

ORGIDS-380: A Registry for Organizational Accounts MUST not allow a registered proof to be
used to register a new root entry.

Using an X.509 certificate as an illustration:

Subject: CN=Acme Air-290528951
Issuer: CN=Acme Air
 |
 | (signed by)
 |
Intermediate CA:
 Subject: CN=Acme Air
 Issuer: CN=Symantec

If the CN value of the property contains the chain ID 290528951, then a malicious party
will not be able to steal this certificate and re-use it in a different blockchain network because the
chain ID will not match. It is imnpossible to modify the chain ID without the private key of the
intermediate CA.

The following interface is the minimal functionality set for the smart contract based registry to
work according to the proposed design. Functions such as getters and queries might be helpful as
optional enhancements.

Interface OrganizationalIDRegistry {
// establish the root account for the organization, the address of the t
ransaction
// sender will be recorded by the contract as the root account for the o
rganization.
// Implementations may choose to validate the proof inside the smart con
tract, and
// cache certain aspects of the proof to the state that helps with faste
r checking for
// administrative operations, such as expiration date.
function registerOrganization(bytes32 orgID, bytes32 orgName, string pro
of) external;
// endorse and register user account within the organization
// the user account will be inserted under the root account in the ident
ity tree
function registerUser(bytes32 metadata, address userAccount) external;
// endorse and register a node within the organization
// the enode ID will be inserted under the root account in the identity

subject

6.1.1.2 Smart Contract Based Registry for Organizational Accounts

tree
function registerNode(bytes32 metadata, bytes32 enodeIDHigh, bytes32 eno
deIDLow) external;
// marks the user account within the organization as deleted/inactive
// the operation is only allowed with the root account
function removeUser(address userAccount) external;
// marks the node within the organization as deleted/inactive
// the operation is only allowed with the root account
function removeNode(bytes32 enodeIDHigh, bytes32 enodeIDLow) external;
// returns the root organization account that owns the user account
function getOwningOrganization(address userAccount) external view return
s (bytes32 orgID, bytes32 orgName);
// returns the root organization account that owns the node
function getOwningOrganization(bytes32 enodeIDHigh, bytes32 enodeIDLow)
external view returns (bytes32 orgID, bytes32 orgName);
// updates the proof for the organization's root account
function updateProof(address rootAccount) external view returns (string
proof);
// returns the proof for the organization's root account for verificatio
n
function getProof(address rootAccount) external view returns (string pro
of);
// broadcast registered organizations for participants to download and i
nspect the proof
event OrganizationRegistered(bytes32 orgID, bytes32 orgName, address roo
tAccount, string proof);
// broadcast registered users
event UserRegistered(bytes32 orgID, address userAccount);
// broadcast removed users
event UserRemoved(bytes32 orgID, address userAccount);
// broadcast registered nodes
event NodeRegistered(bytes32 orgID, ytes32 enodeIDHigh, bytes32 enodeIDL
ow);
// broadcast removed nodes
event NodeRemoved(bytes32 orgID, ytes32 enodeIDHigh, bytes32 enodeIDLow)
;
}

This section is non-normative.

This sublayer provides integration with enterprise management systems using common APIs,
libraries, and techniques.

6.2 Integration and Deployment Tools Sublayer

An Ethereum JSON-RPC API is used to communicate between ÐApps and nodes.

This section presents interfaces for the permissioning contracts. These are the smart contracts
needed on the blockchain to provide necessary information for Enterprise Ethereum clients to
enforce permissioning models in an interoperable manner. There are permissioning interfaces for
both both nodes and accounts.

It is based on a chain deployment architecture where permissioning is split into two parts:

Permissioning enforcement functions.

Clients call permission-allowed functions within the permissioning contracts. These are
common functions for all clients on the Enterprise Ethereum blockchain to use. These
functions include:

connectionAllowed, in the node permissioning contract, to determine whether to
permit a connection with another node.

transactionAllowed, in the account permissioning contract, to determine whether to
accept a transaction received from a given Ethereum account.

A client is not required to be able to update the permissioning scheme nor have knowledge
of its implementation.

The node and account permissioning contracts emit NodePermissionsUpdated and
AccountPermissionsUpdated events respectively, when the underlying rules are
changed. Clients register for these events, that signal when to re-assess any permissions that
were granted, and when to re-assess any permission check results that were cached.

The events contain the addsRestrictions and addsPermissions Boolean flags. If either
flag is set to true, any previous connectionAllowed or transactionAllowed call could
now result in a different outcome, because the previously checked permissions have
changed. If addsRestrictions is true, then one or more connectionAllowed or
transactionAllowed calls that previously returned true will now return false.
Similarly, if addsPermissions is true, at least one connectionAllowed or
transactionAllowed call that previously returned false will now return true.

Permissioning management functions.

6.3 Client Interfaces and APIs Sublayer

6.3.1 Permissioning Smart Contract

These functions provide the ability to configure and manage the permissioning model in use.
These include the bulk of the constructs used to organize permissions, processes to adjust
permissions, administration of the permissioning mechanism, and enforcing any regulatory
requirements.

The definition of these management functions depends on the permissioning model in use
for the specific Enterprise Ethereum blockchain. It is outside the scope of this Specification,
but crucial to the operation of the system. Enterprise Ethereum blockchain operators can
choose any permissioning model that suits their needs.

Implementations of the permissioning contracts (both enforcement and management functions)
are provided on the Enterprise Ethereum blockchain by the blockchain operator. The
implementation of permissioning enforcement functions, such as connectionAllowed, is part
of the permissioning management smart contract.

When a management function is called that updates the permissioning model, the node or
account smart contract interfaces emit NodePermissionsUpdated or
AccountPermissionsUpdated events respectively, based on the permissions change.

The Node permissioning contractNode permissioning contract restricts the peer connections that can be established with
other nodes in the Enterprise Ethereum blockchain. This helps to prevent interference and abuse
by external parties and can establish a trusted whitelist of nodes.

The connectionAllowed function returns a bytes32 type, which is interpreted as a bitmask
with each bit representing a specific permission for the connection.

PERMIT-020 If the permissions for a blockchain are updated to revoke any permission
previously granted to nodes, the node permissioning contract MUST emit a
NodePermissionsUpdated event containing an addsRestrictions property with the value
true. See also PERM-220:.

PERMIT-030 If the permissions for a blockchain are updated to grant any new permissions for
nodes the node permissioning contract MUST emit a NodePermissionsUpdated event
containing an addsRestrictions property with the value false. See also PERM-230:.

6.3.1.1 Node Permissioning

6.3.1.1.1 NODE PERMISSIONING FUNCTIONS

file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html#req-perm-220
file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html#req-perm-230

PERMIT-070 The node connection rules MUST support both the IPv4 and IPv6 protocol
versions.

IPv6 addresses are represented using their logical byte value with big endian byte ordering. IPv4
addresses are specified in the IPv4 reserved space within the IPv6 address space, which is found
at 0000:0000:0000:0000:0000:ffff:, and can be be assembled by taking the logical byte
value of the IPv4 address with big endian byte ordering, and prefixing it with 80 bits of zeros
followed by 16 bits of ones.

The connectionAllowed function implements the following interface, including the
NodePermissionsUpdated event:

Interface
[
 {
 "name": "connectionAllowed",
 "stateMutability": "view",
 "type": "function",
 "inputs": [
 {
 "name": "sourceEnodeHigh",
 "type": "bytes32"
 },
 {
 "name": "sourceEnodeLow",
 "type": "bytes32"
 },
 {
 "name": "sourceIp",
 "type": "bytes16"
 },
 {
 "name": "sourcePort",
 "type": "uint16"
 },
 {
 "name": "destinationEnodeHigh",
 "type": "bytes32"
 },
 {
 "name": "destinationEnodeLow",
 "type": "bytes32"
 },
 {
 "name": "destinationIp",

 "type": "bytes16"
 },
 {
 "name": "destinationPort",
 "type": "uint16"
 },
],
 "outputs": [
 {
 "name": "result",
 "type": "bytes32"
 }
]
 },
 {
 "type": "event",
 "name": "NodePermissionsUpdated",
 "inputs": [
 {
 "name": "addsRestrictions",
 "type": "bool",
 "indexed": false
 },
 {
 "name": "addsPermissions",
 "type": "bool",
 "indexed": false
 }
]
 }
]

Arguments

sourceEnodeHigh: The high (first) 32 bytes of the enode address of the node initiating the
connection.

sourceEnodeLow: The low (last) 32 bytes of the enode address of the node initiating the
connection.

sourceIp: The IP address of the node initiating the connection. If the address is IPv4, it
should be prefixed by 80 bits of zeros and 16 bits of ones, bitmasking it such that it fits the
IPv4 reserved space in IPv6. For example, ::ffff:127.0.0.1.

sourceEnodePort: The peer-to-peer listening port of the node initiating the connection.

destinationEnodeHigh: The high (first) 32 bytes of the enode address of the node
receiving the connection.

destinationEnodeLow: The low (last) 32 bytes of the enode address of the node receiving
the connection.

destinationIp: The IP address of the node receiving the connection. If the address is
IPv4, it should be prefixed by 80 bits of zeros and 16 bits of ones, bitmasking it such that it
fits the IPv4 reserved space in IPv6. For example, ::ffff:127.0.0.1.

destinationEnodePort: The peer-to-peer listening port of the node receiving the
connection.

result: A bitmask of the permissions granted for this connection.

addsRestrictions: If the rules change that caused the NodePermissionsUpdated event
to be emitted involves further restricting existing permissions, this will be true, otherwise
false.

addsPermissions: If the rules change that caused the NodePermissionsUpdated event
to be emitted involves granting new permissions, this will be true, otherwise false.

While the core premise of node permissioning is whether a connection is allowed to occur or not,
there are additional restrictions that can be imposed on a connection between two nodes based on
the permitted behavior of the nodes.

The various permissions that can be granted to a connection are represented by bits being set in
the bitmask response from connectionAllowed. Where bits are unset, the client restricts the
behavior of the remote node according to the unset bits.

The remaining bits in the response are normally set to one. If any of the remaining bits are zero,
an unknown permission restriction was placed on the connection and the connection will be
denied. These unknown zeros are likely to represent permissions defined in future versions of
this specification. Where they cannot be interpreted by a client, the connection is rejected.

Connection Permitted

Permission Bit Index: 0

The connection is allowed to be established.

6.3.1.1.2 NODE PERMISSIONS

6.3.1.1.3 CLIENT IMPLEMENTATION

A client connecting to a chain that maintains a permissioning contract finds the address of the
contract in the network configuration. When a peer connection request is received, or a new
connection request initiated, the permissioning contract is queried to assess whether the
connection is permitted. If permitted, the connection is established and when the node is queried
for peer discovery, this connection can be advertised as an available peer. If not permitted, the
connection is either refused or not attempted, and the peer excluded from any responses to peer
discovery requests.

During client startup and initialization the client begins at a bootnode and initially has a global
state that is out of sync. Until the client reaches a trustworthy head it is unable to reach a current
version of the node permissioning that correctly represents the current blockchain's state.

CONFIG-040: A node permissioning contract with the connectionAllowed function as
defined in section 6.3.1.1.1 Node Permissioning Functions, MUST be included in the genesis
block (block 0), available at the address specified in the network configuration parameter
nodePermissionContract.

The configuration of the node permissioning contract allows initial nodes to establish
connections to each other.

The account permissioning contractaccount permissioning contract controls which accounts are allowed to send
transactions, and the type of transactions permitted.

The transactionAllowed function implements the following interface, including the
AccountPermissionsUpdated event:

Interface
[
 {
 "name": "transactionAllowed",
 "stateMutability": "view",
 "type": "function",

6.3.1.1.4 CHAIN INITIALIZATION

6.3.1.2 Account Permissioning

6.3.1.2.1 ACCOUNT PERMISSIONING SMART CONTRACT INTERFACE FUNCTION

 "inputs": [
 {
 "name": "sender",
 "type": "address"
 },
 {
 "name": "target",
 "type": "address"
 },
 {
 "name": "value",
 "type": "uint256"
 },
 {
 "name": "gasPrice",
 "type": "uint256"
 },
 {
 "name": "gasLimit",
 "type": "uint256"
 },
 {
 "name": "payload",
 "type": "bytes"
 }
],
 "outputs": [
 {
 "name": "result",
 "type": "bool"
 }
]
 },
 {
 "type": "event",
 "name": "AccountPermissionsUpdated",
 "inputs": [
 {
 "name": "addsRestrictions",
 "type": "bool",
 "indexed": false
 },
 {
 "name": "addsPermissions",
 "type": "bool",
 "indexed": false

 }
]
 }
]

Arguments

sender: The address of the account that created this transaction.

target: The address of the account or contract that this transaction is directed at. For a
creation contract where there is no target, this should be zero filled to represent the null
address.

value: The eth value being transferred in this transaction.

gasPrice: The gas price included in this transaction

gasLimit: The gas limit in this transaction.

payload: The payload in this transaction. Either empty if a simple value transaction, the
calling payload if executing a contract, or the EVM code to be deployed for a contract
creation.

addsRestrictions: If the rules change that caused the AccountPermissionsUpdated
event to be emitted involves further restricting existing permissions, this will be true.

addsPermissions: If the rules change that caused the AccountPermissionsUpdated
event to be emitted grants new permissions, this will be true.

Return value

boolean result: A value of true means the account submitting the transaction has
permission to submit it.

PERMIT-090 Account permissioning contracts MUST respond with a bool value of true for
the case where the transaction is allowed, or false for the case where the transaction is not
allowed.

A client connecting to a chain that maintains a smart contract exposing the account permissioning
interface can expect to be supplied the address of the contract.

Reading of a contract is an unrestricted operation.

6.3.1.2.2 CLIENT IMPLEMENTATION

When a transaction is checked by the contract it can be assessed by any of the fields provided to
restrict operations, such as transferring value between accounts, rate limiting spend or receipt of
value, restricting the ability to execute code at an address, limiting gas expenditure or enforcing a
minimum expenditure, or restricting the scope of a created contract.

When checking the execution of code at an address, it can be useful to be aware of the
EXTCODEHASH EVM operation, which allows for checking whether there is code present to be
executed at the address that received the request.

For restricting the scope of created contracts it might be necessary to do static code analysis of
the EVM bytecode payload for properties that are not allowed. For example, restricting creation
of contracts that employ the create contract opcode.

CONFIG-050 A permissioning contract with the transactionAllowed function as defined in
section 6.3.1.2.1 Account Permissioning Smart Contract Interface Function, MUST be included
in the genesis block (block 0), available at the address specified in the network configuration
parameter transactionPermissionContract.

The permissioning contract function is configured so initial accounts can perform required value
transactions, a predetermined set of accounts can invoke the contracts defined in the genesis file,
and if desired, a predetermined set of accounts can create new contracts.

Privacy, performance, and permissioning are the "3 P's" of Enterprise Ethereum. This section
describes the extensions in Enterprise Ethereum that support these requirements.

Privacy and performance solutions are broadly categorized into:

Layer 1Layer 1 solutions, which are implemented at the base level protocol layer using techniques
such as [sharding] and easy parallelizability [EIP-648].

Layer 2Layer 2 solutions, which do not require changes to the base level protocol layer. They are
implemented at the application protocol layer, for example using [Plasma], [state-channels],
and Off-Chain Trusted Computing mechanisms.

6.3.1.2.3 CONTRACT IMPLEMENTATION

6.3.1.2.4 CHAIN INITIALIZATION

7. Enterprise 3 P's Layer

Many use cases for Enterprise Ethereum blockchains have to comply with regulations related to
privacy. For example, banks in the European Union are required to comply with the European
Union revised Payment Services Directive [PSD2] when providing payment services, and the
General Data Protection Regulation [GDPR] when storing personal data regarding individuals.

Enterprise Ethereum clients support privacy with techniques such as private transactions and
enabling an Enterprise Ethereum blockchain to permit anonymous participants. Clients can also
support privacy-enhanced Off-Chain Trusted Computing.

New privacy mechanisms are are also being explored as extensions to public Ethereum,
including zero-knowledge proofszero-knowledge proofs [ZKP], which is a cryptographic technique where one party
(the prover) can prove to another party (the verifier) that the prover knows a value , without
conveying any information apart from the fact that the prover knows the value. [ZK-STARKS] is
an example of a zero-knowledge proof method.

A transactiontransaction is a request to execute operations on a blockchain that change the state of one or
more accounts. Transactions are a core component of most blockchains, including Public
Ethereum and Enterprise Ethereum. Nodes processing transactions is the fundamental basis of
adding blocks to the chain.

A private transactionprivate transaction is a transaction where some information about the transaction, such as
the payload data, or the sender or the recipient, is only available to the subset of parties privy to
that transaction.

Enterprise Ethereum implementations can also support off-chain trusted computing, enabling
privacy during code execution.

This section is non-normative.

Various on-chain techniques can improve the security and privacy capabilities of Enterprise
Ethereum blockchains.

NOTE: On-chain Security Techniques

Future on-chain security techniques could include techniques such as [ZK-STARKS], range
proofs, or ring signatures.

7.1 Privacy Sublayer

x

7.1.1 On-chain Privacy

This section is non-normative.

Off-chain trusted computingOff-chain trusted computing uses a privacy-enhanced system to handle some of the
computation requested by a transactions. Such systems can be hardware-based, software-based,
or a hybrid, depending on the use case.

The EEA has developed Trusted Compute APIs for Ethereum-compatible trusted computing
[EEA-OC].

This section is non-normative.

Performance is an important requirement because many use cases for Enterprise Ethereum
blockchains imply a high volume of transactions, or computationally heavy tasks. The overall
performance of a blockchain is constrained by the slowest node.

There are many different aspects of performance, and instead of mandating specific
requirements, this Specification notes the importance of performance, leaving Enterprise
Ethereum blockchain implementers free to implement whatever strategies are appropriate.

This Specification does not constrain experimentation to improve performance. This is an active
area of research, and it is likely various techniques to improve performance will be developed
over time, which cannot be exactly predicted.

This Specification does mandate or allow for several optimizations to improve performance. The
most important techniques maximize the throughput of transactions.

Techniques to improve performance through scaling are valuable for blockchains where
processing is kept on the blockchain and have high transaction throughput requirements.

On-chain (layer 1) scaling techniques, like [sharding], are changes or extensions to the public
Ethereum protocol to facilitate increased transaction speeds.

On-chain (layer 2) scaling techniques use smart contracts, and approaches like [Plasma], or
[state-channels], to increase transaction speed without changing the underlying Ethereum
protocol. For more information, see [Layer2-Scaling-Solutions].

7.1.2 Off-chain Privacy (Trusted Computing)

7.2 Performance Sublayer

7.2.1 On-chain (Layer 1 and Layer 2) Scaling

Off-chain computing can be used to increase transaction speeds, by moving the processing of
computationally intensive tasks from nodes processing transactions to one or more trusted
computing services. This reduces the resources needed by nodes allowing them to produce
blocks faster.

This section is non-normative.

PermissioningPermissioning is the property of a system that ensures operations are executed by and
accessible to designated parties. For Enterprise Ethereum, permissioning refers to the ability of a
node to join an Enterprise Ethereum blockchain, and the ability of individual accounts or nodes
to perform specific functions. For example, an Enterprise Ethereum blockchain might allow only
certain nodes to act as validators, and only certain accounts to instantiate smart contracts.

Enterprise Ethereum provides a permissioned implementation of Ethereum supporting peer node
connectivity permissioning, account permissioning, and transaction type permissioning.

PERMIT-030: The node permissioning contract SHOULD specify a list of static peer nodes to
establish peer-to-peer connections with. See also NODE-010: in the Enterprise Ethereum
Alliance Client Specification [EEA-client].

PERMIT-040: The node permissioning contracts MUST manage a whitelist required by NODE-
030 through a transaction into a smart contract. See also NODE-030: in the Enterprise Ethereum
Alliance Client Specification [EEA-client].

For the purpose of this Specification:

An organizationorganization is a logical group composed of Ethereum accounts, nodes, and other
organizations or suborganizations. A suborganizationsuborganization is an organization controlled by and
subordinate to another organization. An organization typically represents an enterprise, or
some identifiable part of an enterprise. For the purpose of permissioning, organizations
roughly correspond to the UNIX concept of groups.

7.2.2 Off-chain (Layer 2 Compute)

7.3 Permissioning Sublayer

7.3.1 Nodes

7.3.2 Ethereum Accounts

file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html#req-node-030

A useruser is a human or an automated process interacting with an Enterprise Ethereum
blockchain using the Ethereum JSON-RPC API. The identity of a user is represented by an
Ethereum account. Public key cryptography is used to sign transactions made by the user so
the EVM can authenticate the identity of a user sending a transaction.

An Ethereum accountEthereum account is an established relationship between a user and an Ethereum
blockchain. Having an Ethereum account allows users to interact with a blockchain, for
example to submit transactions or deploy smart contracts.

GroupsGroups are collections of users that have or are allocated one or more common attributes.
For example, common privileges allowing users to access a specific set of services or
functionality.

RolesRoles are sets of administrative tasks, each with associated permissions that apply to users
or administrators of a system, used for example in RBAC permissioning contracts.

PERMIT-010: An Enterprise Ethereum blockchain account permissioning contract MUST
enable whitelisting accounts that are permitted to interact with the blockchain. See also PART-
010: in the Enterprise Ethereum Alliance Client Specification [EEA-client].

PERMIT-060: The account permissioning contract MUST manage separate permissioning for an
account to:

Deploy smart contracts.

Call functions that change the state of specified smart contracts.

Perform a value transfer to a specified account.

Permissioning contracts can use the Proxy / Updateable contract patttern, for example to ensure
that it is possible to change the management functions if an Enterprise Ethereum Blockchain
needs a system with more features. If a new node is trying to synchronise the entire chain, it is
important that it can "replay" each transaction, including those that make changes to the
management of permissioning.

PERMIT-080 Permissioning contracts that are updateable MUST NOT allow changes through a
private transaction.

Network configurationNetwork configuration refers to the collection of settings defined for a blockchain, such as
which consensus algorithm to use, addresses of permissioning smart contracts, and so on.

7.3.3 Additional Permissioning Requirements

The Core Blockchain layer consists of the Storage and Ledger, Execution, and Consensus
sublayers.

The Storage and Ledger sublayer is provided to store the blockchain state, such as smart
contracts for later execution.

The Execution sublayer implements the Ethereum Virtual MachineEthereum Virtual Machine (EVM), which is a
runtime computing environment for the execution of smart contracts. Each node operates an
EVM.

Smart contractsSmart contracts are computer programs that the EVM executes. A precompiled contractprecompiled contract is a
smart contract compiled in EVM bytecode and stored by a node.

Finally, the Consensus sublayer provides a mechanism to establish consensus between nodes.
ConsensusConsensus is the process of nodes on a blockchain reaching agreement about the current state of
the blockchain.

A consensus algorithmconsensus algorithm is the mechanism by which a blockchain achieves consensus. Different
blockchains can use different consensus algorithms, but all nodes of a given blockchain need to
use the same consensus algorithm.

DOCUMT-010: Enterprise Ethereum blockchains MUST document any extension to the public
Ethereum EVM op-code set [EVM-Opcodes] that can be used in smart contracts in the EEA
Opcode Registry. See also EXEC-020: in the Enterprise Ethereum Alliance Client Specification
[EEA-client].

FinalityFinality occurs when a transaction is definitively part of the blockchain and cannot be removed.
A transaction reaches finality after some event defined for the relevant blockchain occurs. For
example, an elapsed amount of time or a specific number of blocks added.

A common consensus algorithm implemented by all clients is required to ensure interoperability
between clients.

8. Core Blockchain Layer

8.1 Execution Sublayer

8.1.1 Finality

8.2 Consensus Sublayer

CONFIG-010: Any limit on the size of smart contracts that can be deployed on an Enterprise
Ethereum Blockchain MUST be specified by the maxCodeSize network configuration parameter,
as defined in the section 9.1 The maxCodeSize network configuration parameter below. See also
SMRT-040: in the Enterprise Ethereum Alliance Client Specification [EEA-client].

This section is experimental

The purpose of the maxCodeSize network configuration parameter is to specify a in
kilobytes for the size of a smart contract that can be deployed by a transaction. A transaction to
deploy a smart contract larger than the current is invalid.

The default value of the is implementation-dependent and determined by individual
Enterprise Ethereum clients. It is at least 24 kilobytes.

Smart contracts that have already been deployed to the chain can be executed regardless of the
current value of the . Deployed smart contracts can be stopped from operating through the
permissioning contract.

The value of the maxCodeSize parameter is either an integer, specifying the directly, or a
Javascript object, consisting of pairs of integers.

If the value is an object, for each pair of integers:

the first number in the pair specifies the ,

the second number specifies the first block at which the associated applies.

A missing or non-integer value for the means the blockchain imposes the default value.

A negative value for the means the blockchain imposes no limit.

NOTE

Enterprise Ethereum clients can have an implementation-dependent limit, that is guaranteed
to be at least 24 kilobytes.

A value of 0 for the means that any transaction to deploy a smart contract is invalid: no new
smart contract can be added to the blockchain.

9. Blockchain Configuration

9.1 The maxCodeSize network configuration parameter

limit

limit

limit

limit

limit

limit

limit

limit

limit

limit

A missing, negative or non-integer value for the is an error, and clients will ignore
any associated .

A value for the that is lower than a previous value is an error, and clients will ignore
any associated .

block height
limit

block height
limit

INTROP-010: Enterprise Ethereum blockchains MUST use the Clique Proof of Authority
consensus algorithm [EIP-225]. See also CONS-093: in the Enterprise Ethereum Alliance Client

EXAMPLE 1

Given the following value of maxCodeSize:

"maxCodeSize" : {
 48 : 5000,
 92 : 12750,
 -1 : 15000,
 256: 14000,
 256: -1000,
 256: 20000,
 0: 25000,
 "default": 30000
 }

Since there is no value specified for the first 4999 blocks, the default limit is applied.
This means that Transactions can deploy smart contracts of

at least* 24 kilobytes, with an unknown implementation-dependent limit imposed by
nodes.

Transactions to deploy smart contracts from blocks 5000 to 12749 are only valid if the
smart contract they are deploying is not larger than 48 kilobytes.

From blocks 12750 to 14999 there is a limit of 92 kilobytes applied.

From block 15000 to block 19999 there is no specified limit. Enterprise Ethereum
clients might be unable to process smart contracts because they are too large for the
software, but are required to process smart contracts of at least 23576 bytes and can
generally process much larger ones.

The fourth and fifth lines are treated as errors, and have no effect.

From block 20000 to 24999, smart contracts larger than 256kb bytes cannot be
deployed.

From block 25000 to 29999 no transaction to deploy a smart contract is valid.

From block 30000, the implementation-dependent default limit (at least 24kb) will be
applied again.

Note that the changes to the maxCodeSize only affect the size of smart contracts that
can be deployed. Smart contracts already on the blockchain can still be executed, whatever
their size.

limit

https://eips.ethereum.org/EIPS/eip-225

Specification [EEA-client].

The Technical Specification Working Group expects to develop or identify at least one Byzantine
Fault Tolerant Consensus algorithm, which could be used instead of Clique.

The genesis blockgenesis block is the first block of a blockchain.

A hard forkhard fork is a permanent divergence from the previous version of a blockchain. nodes running
previous versions are no longer accepted by the newest version.

A hard fork blockhard fork block is the block that marks the start of a hard fork.

This section provides a summary of all requirements in this Specification.

ORGIDS-300: Enterprise Ethereum Blockchains MAY implement a smart contract based
Organization Registry that provides cryptographic bindings between Ethereum accounts and their
owning organization with identity proofs.

ORGIDS-310: An Organization Registry MUST require all root entries to present an identity
proof with:

a signing authority attesting that the proof has been uniquely issued for the organization
identified by the subject

a digital signature generated by the private key for the root signing account

ORGIDS-320: An Organization Registry MUST require the root signing account for an
organization to insert child entries under that organization.

ORGIDS-330: An Organization Registry MUST support an extensibility mechanism to allow
different types of proofs to be submitted and verified.

ORGIDS-340: An Organization Registry MUST support at least one of the following proof
types:

X.509 Certificates [rfc5280] generated by a trusted Certificate Authority (CA), attached to a
chain of intermediate CAs leading up to a globally recognized root CA.

A. Additional Information

A.1 Summary of Requirements

A Verifiable Presentations data structure [VC-presentations] as defined within the W3C
Verifiable Credentials Data Model [vc-data-model].

Verifiable Credentials is a new W3C standard in the Decentralized Identifier (DID) ecosystem.
The Verifiable Credentials data model is not itelf suitable as a proof type because it does not
support chain-unique challenges for replay attack protections.

ORGIDS-350: An Organization Registry MAY verify the proofs in the smart contract and
immediately reject a registration that did not present a valid proof, or allow a registration to be
validated or invalidated by an off-chain agent.

ORGIDS-360:If an Organization Registry performs proof validation in the smart contract, it
MUST offer at least the following options to support different "freshness" requirements:

validate once during registration, rely on administration operations to update expired or
revoked proofs

validate during registration, replicate expiration date in the contract for faster checking
subsequently

validate every time the account is used

ORGIDS-370: Identity proofs MUST protect against re-use by a malicious party, by embedding
a chain-unique challenge segment, such as the chain ID, in the signed claims inside the proof.

ORGIDS-380: A Registry for Organizational Accounts MUST not allow a registered proof to be
used to register a new root entry.

PERMIT-020 If the permissions for a blockchain are updated to revoke any permission
previously granted to nodes, the node permissioning contract MUST emit a
NodePermissionsUpdated event containing an addsRestrictions property with the value
true. See also PERM-220:.

PERMIT-030 If the permissions for a blockchain are updated to grant any new permissions for
nodes the node permissioning contract MUST emit a NodePermissionsUpdated event
containing an addsRestrictions property with the value false. See also PERM-230:.

PERMIT-070 The node connection rules MUST support both the IPv4 and IPv6 protocol
versions.

CONFIG-040: A node permissioning contract with the connectionAllowed function as
defined in section 6.3.1.1.1 Node Permissioning Functions, MUST be included in the genesis
block (block 0), available at the address specified in the network configuration parameter
nodePermissionContract.

https://www.w3.org/TR/2019/REC-vc-data-model-20191119/#dfn-verifiable-presentations
file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html#req-perm-220
file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html#req-perm-230

PERMIT-090 Account permissioning contracts MUST respond with a bool value of true for
the case where the transaction is allowed, or false for the case where the transaction is not
allowed.

CONFIG-050 A permissioning contract with the transactionAllowed function as defined in
section 6.3.1.2.1 Account Permissioning Smart Contract Interface Function, MUST be included
in the genesis block (block 0), available at the address specified in the network configuration
parameter transactionPermissionContract.

PERMIT-010: An Enterprise Ethereum blockchain account permissioning contract MUST
enable whitelisting accounts that are permitted to interact with the blockchain. See also PART-
010: in the Enterprise Ethereum Alliance Client Specification [EEA-client].

PERMIT-060: The account permissioning contract MUST manage separate permissioning for an
account to:

Deploy smart contracts.

Call functions that change the state of specified smart contracts.

Perform a value transfer to a specified account.

PERMIT-080 Permissioning contracts that are updateable MUST NOT allow changes through a
private transaction.

DOCUMT-010: Enterprise Ethereum blockchains MUST document any extension to the public
Ethereum EVM op-code set [EVM-Opcodes] that can be used in smart contracts in the EEA
Opcode Registry. See also EXEC-020: in the Enterprise Ethereum Alliance Client Specification
[EEA-client].

CONFIG-010: Any limit on the size of smart contracts that can be deployed on an Enterprise
Ethereum Blockchain MUST be specified by the maxCodeSize network configuration parameter,
as defined in the section 9.1 The maxCodeSize network configuration parameter below. See also
SMRT-040: in the Enterprise Ethereum Alliance Client Specification [EEA-client].

INTROP-010: Enterprise Ethereum blockchains MUST use the Clique Proof of Authority
consensus algorithm [EIP-225]. See also CONS-093: in the Client Specification.

The following is a list of terms defined in this Specification.

account permissioning contract

consensus

A.2 Defined Terms

https://eips.ethereum.org/EIPS/eip-225
file:///Users/chaals/Documents/GitHub/client-spec/docs/spec.html#req-cons-093

consensus

consensus algorithm

ÐApps

Enterprise Ethereum

Enterprise Ethereum blockchain

Enterprise Ethereum client

Ethereum account

Ethereum JSON-RPC API

Ethereum MainNet

Ethereum Name Service

Ethereum Virtual Machine

experimental

finality

gas

genesis block

groups

hard fork

hard fork block

identity proof

interoperate

layer 1

layer 2

network configuration

node

node permissioning contract

off-chain trusted computing

organization

organization registry

participating organization

permissioning

permissioning contract

precompiled contract

The EEA acknowledges and thanks the many people who contributed to the development of this
version of the specification. Please advise us of any errors or omissions.

This version builds on the work of all who contributed to previous versions of the Enterprise
Ethereum Client Specification, whom we hope are all acknowledged in those documents. We
apologize to anyone whose name was left off the list. Please advise us at
https://entethalliance.org/contact/ of any errors or omissions.

Enterprise Ethereum is built on top of Ethereum, and we are grateful to the entire community
who develops Ethereum, for their work and their ongoing collaboration to helps us maintain as
much compatibility as possible with the Ethereum ecosystem.

The copyright in this document is owned by Enterprise Ethereum Alliance Inc. (“EEA” or
“Enterprise Ethereum Alliance”).

No modifications, edits or changes to the information in this document are permitted. Subject to
the terms and conditions described herein, this document may be duplicated for internal use,
provided that all copies contain all proprietary notices and disclaimers included herein. Except as
otherwise provided herein, no license, express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

precompiled contract

private transaction

Public Ethereum

roles

root signing account

smart contracts

suborganization

transaction

user

zero-knowledge proofs

A.3 Acknowledgments

A.4 Legal Notice

https://entethalliance.org/resources/
https://entethalliance.org/contact/

Use of this document and any related intellectual property incorporated herein, is also governed
by the Bylaws, Intellectual Property Rights Policy and other governing documents and policies
of EEA and is subject to the disclaimers and limitations described below.

No use or display of any of the following names or marks "Enterprise Ethereum Alliance", the
acronym "EEA", the EEA logo, or any combination thereof, to claim compliance with or
conformance to this document (or similar statements) is permitted absent EEA membership and
express written permission from the EEA. The EEA is in process of developing a compliance
testing and certification program only for the EEA members in good standing, which it targets to
launch towards the end of 2020.

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY
WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE, TRADE
PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE. EEA DOES NOT WARRANT
THAT THIS DOCUMENT IS COMPLETE OR WITHOUT ERROR AND DISCLAIMS ANY
WARRANTIES TO THE CONTRARY.

Each user of this document hereby acknowledges that sofftware or products implementing the
technology specified in this document ("EEA-Compliant Products") may be subject to various
regulatory controls under the laws and regulations of various governments worldwide. Such laws
and regulatory controls may govern, among other things, the combination, operation, use,
implementation and distribution of EEA-Compliant Products. Examples of such laws and
regulatory controls include, but are not limited to, airline regulatory controls,
telecommunications regulations, finance industry and security regulations, technology transfer
controls, health and safety and other types of regulations. Each user of this document is solely
responsible for the compliance by their EEA-Compliant Products with any such laws and
regulations and for obtaining any and all required authorizations, permits, or licenses for their
EEA-Compliant Products related to such regulations within the applicable jurisdictions. Each
user of this document acknowledges that nothing in this document or the relevant specification
provides any information or assistance in connection with securing such compliance,
authorizations or licenses. NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES
WHATSOEVER REGARDING THE APPLICABILITY OR NON-APPLICABILITY OF ANY
SUCH LAWS OR REGULATIONS OR THE SUITABILITY OR NON-SUITABILITY OF ANY
SUCH PRODUCT OR SERVICE FOR USE IN ANY JURISDICTION.

EEA has not investigated or made an independent determination regarding title or non-
infringement of any technologies that may be incorporated, described or referenced in this
document. Use of this document or implementation of any technologies described or referenced
herein may therefore infringe undisclosed third-party patent rights or other intellectual property

rights. The user is solely responsible for making all assessments relating to title and non-
infringement of any technology, standard, or specification referenced in this document and for
obtaining appropriate authorization to use such technologies, standards, and specifications,
including through the payment of any required license fees.

NOTHING IN THIS DOCUMENT CREATES ANY WARRANTIES OF TITLE OR
NONINFRINGEMENT WITH RESPECT TO ANY TECHNOLOGIES, STANDARDS OR
SPECIFICATIONS REFERENCED OR INCORPORATED INTO THIS DOCUMENT.

IN NO EVENT SHALL EEA OR ANY OF ITS MEMBERS BE LIABLE TO THE USER OR
TO A THIRD PARTY FOR ANY CLAIM ARISING FROM OR RELATING TO THE USE OF
THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, A CLAIM THAT SUCH USE
INFRINGES A THIRD PARTY’S INTELLECTUAL PROPERTY RIGHTS OR THAT IT FAILS
TO COMPLY WITH APPLICABLE LAWS OR REGULATIONS. BY USE OF THIS
DOCUMENT, THE USER WAIVES ANY SUCH CLAIM AGAINST EEA AND ITS
MEMBERS RELATING TO THE USE OF THIS DOCUMENT.

EEA reserves the right to adopt any changes or alterations to this document as it deems necessary
or appropriate without any notice. User is solely responsible for determining whether this
document has been superseded by a later version or a different document.

[EIP-225]
Clique proof-of-authority consensus protocol. Ethereum Foundation. URL:
https://eips.ethereum.org/EIPS/eip-225

[EIP-648]
Easy Parallelizability. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/648

[EVM-Opcodes]
Ethereum Virtual Machine (EVM) Opcodes and Instruction Reference. URL:
https://github.com/trailofbits/evm-opcodes

[GDPR]
European Union General Data Protection Regulation. European Union. URL: https://eur-
lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679

[JSON-RPC]

B. References

B.1 Normative references

https://eips.ethereum.org/EIPS/eip-225
https://eips.ethereum.org/EIPS/eip-225
https://github.com/ethereum/EIPs/issues/648
https://github.com/ethereum/EIPs/issues/648
https://github.com/trailofbits/evm-opcodes
https://github.com/trailofbits/evm-opcodes
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298&uri=CELEX%3A32016R0679

JavaScript Object Notation - Remote Procedure Call. JSON-RPC Working Group. URL:
http://www.jsonrpc.org/specification

[Plasma]
Plasma: Scalable Autonomous Smart Contracts. Joseph Poon and Vitalik Buterin. August
2017. URL: https://plasma.io/plasma.pdf

[PSD2]
European Union Personal Service Directive. European Union. URL:
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[rfc5280]
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. IETF. May
2008. Proposed Standard. URL: https://tools.ietf.org/html/rfc5280

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://tools.ietf.org/html/rfc8174

[sharding]
Sharding FAQs. Ethereum Foundation. URL:
https://github.com/ethereum/wiki/wiki/Sharding-FAQs

[state-channels]
Counterfactual: Generalized State Channels. URL: https://counterfactual.com/statechannels

[vc-data-model]
Verifiable Credentials Data Model 1.0. Manu Sporny; Grant Noble; Dave Longley; Daniel
Burnett; Brent Zundel. W3C. 19 November 2019. W3C Recommendation. URL:
https://www.w3.org/TR/vc-data-model/

[VC-presentations]
Verifiable presentations', section in 'Verifiable Credentials Data Model'. W3C. URL:
https://www.w3.org/TR/2019/REC-vc-data-model-20191119/#dfn-verifiable-presentations

[ZK-STARKS]
Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive. 2018-03-16. URL: https://eprint.iacr.org/2018/046.pdf

[ZKP]
Zero Knowledge Proof. Wikipedia. URL: https://en.wikipedia.org/wiki/Zero-
knowledge_proof

B.2 Informative references

http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc8174
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://counterfactual.com/statechannels
https://counterfactual.com/statechannels
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/2019/REC-vc-data-model-20191119/#dfn-verifiable-presentations
https://www.w3.org/TR/2019/REC-vc-data-model-20191119/#dfn-verifiable-presentations
https://eprint.iacr.org/2018/046.pdf
https://eprint.iacr.org/2018/046.pdf
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Zero-knowledge_proof

[Byzantine-Fault-Tolerant]
Byzantine Fault Tolerant. URL: https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

[EEA-client]
Enterprise Ethereum Alliance Client Specification v5. URL: https://entethalliance.org/wp-
content/uploads/2020/05/EEA_Enterprise_Ethereum_Client_Specification_V5.pdf

[EEA-implementation-guide]
Enterprise Ethereum Alliance Implementation Guide (Work in Progress). Enterprise
Ethereum Alliance, Inc. URL: https://entethalliance.github.io/client-spec/implementing.html

[EEA-OC]
Enterprise Ethereum Alliance Off-Chain Trusted Compute Specification v1.1. Enterprise
Ethereum Alliance, Inc. URL: https://entethalliance.org/wp-
content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf

[EIPs]
Ethereum Improvement Proposals. Ethereum Foundation. URL: https://eips.ethereum.org/

[ERC-20]
Ethereum Improvement Proposal 20 - Standard Interface for Tokens. Ethereum Foundation.
URL: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

[ERC-223]
Ethereum Improvement Proposal 223 - Token Standard. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/223

[ERC-621]
Ethereum Improvement Proposal 621 - Token Standard Extension for Increasing &
Decreasing Supply. Ethereum Foundation. URL: https://github.com/ethereum/EIPs/pull/621

[ERC-721]
Ethereum Improvement Proposal 721 - Non-fungible Token Standard. Ethereum Foundation.
URL: https://github.com/ethereum/eips/issues/721

[ERC-827]
Ethereum Improvement Proposal 827 - Extension to ERC-20. Ethereum Foundation. URL:
https://github.com/ethereum/EIPs/issues/827

[Ethereum-Yellow-Paper]
Ethereum: A Secure Decentralized Generalized Transaction Ledger. Dr. Gavin Wood. URL:
https://ethereum.github.io/yellowpaper/paper.pdf

[Function-collision]
Malicious backdoors in Ethereum Proxies. Patricio Palladino. URL:
https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-
62629adf3357

[Layer2-Scaling-Solutions]
Making Sense of Ethereum's Layer 2 Scaling Solutions: State Channels, Plasma, and
Truebit. Josh Stark. February 2018. URL: https://medium.com/l4-media/making-sense-of-

https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://entethalliance.org/wp-content/uploads/2020/05/EEA_Enterprise_Ethereum_Client_Specification_V5.pdf
https://entethalliance.org/wp-content/uploads/2020/05/EEA_Enterprise_Ethereum_Client_Specification_V5.pdf
https://entethalliance.github.io/client-spec/implementing.html
https://entethalliance.github.io/client-spec/implementing.html
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://eips.ethereum.org/
https://eips.ethereum.org/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/issues/223
https://github.com/ethereum/EIPs/pull/621
https://github.com/ethereum/EIPs/pull/621
https://github.com/ethereum/eips/issues/721
https://github.com/ethereum/eips/issues/721
https://github.com/ethereum/EIPs/issues/827
https://github.com/ethereum/EIPs/issues/827
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357
https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4

ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4

[Upgrade-contracts]
Building Upgradeable Smart Contracts. Andrea Di Nenno, Clearmatics. URL:
https://medium.com/clearmatics/upgrading-smart-contracts-c9fb144eceb7

[WP-ABAC]
Attribute-based access control. Wikipedia. URL: https://en.wikipedia.org/wiki/Attribute-
based_access_control

[WP-RBAC]
Role-based access control. URL: https://en.wikipedia.org/wiki/Role-based_access_control

↑

https://medium.com/l4-media/making-sense-of-ethereums-layer-2-scaling-solutions-state-channels-plasma-and-truebit-22cb40dcc2f4
https://medium.com/clearmatics/upgrading-smart-contracts-c9fb144eceb7
https://medium.com/clearmatics/upgrading-smart-contracts-c9fb144eceb7
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control

